DYNAMIK DURGH WIDERSTAND

D Y NAMIGS
 THROUGH RESISTANGE

F—12LEN LEISTUNGSWIDERSTANDE

DYNAMIK DURCH WIDERSTAND
Wir über uns

DYNAMICS THROUGH RESISTANCE
About us

THE ORIGINAL ONES
Wirewound tubular fixed resistors
10 up to 6000 Watt

DIE FLEKIBLEN

Zementierte
Drahtdrehwiderstände
16 bis 1500 Watt

DIE INNOVATIVEN

Drahtgewickelte Flachwiderstände, auch gekapselt und in wassergekühlter Ausführung
5 bis 40000 Watt

the flekible ONES

Cement coated wirewound variable resistors
16 up to 1500 Watt

DIE KLASSIKER
Drahtgewickelte Rohrfestwiderstände 10 bis 6000 Watt

DIE BELASTBAREN
Last- und Prüfwiderstände
0,01 bis 250 Kilowatt

THE INNOVATIVE ONES

Wirewound flat resistors, also enclosed and watercooled
5 up to 40000 Watt

DIE MODULAREN
Drahtgewickelte
Lamellenfestwiderstände
0,15 bis 30 Kilowatt

DIE ROBUSTEN

Stahlgitterfestwiderstände
0,5 bis 250 Kilowatt

FRIZLEN
SONDERGERÄTE
DC-POWERSWITCH
Kundenspezifische Widerstandsgeräte

the modular ones

Wirewound lamina type
fixed resistors
0,15 up to 30 Kilowatt

THE ROBUST ONES

Steel-grid fixed resistors
0,5 up to 250 Kilowatt

Das richtige Produkt für Ihre Anwendung

Anwendungen	Application	Typleistung [kW] Typical power		Produktgruppe Product group					
		min.	max.	T 100	T 200	T 300	T400	T 500	T 600
Bremswiderstände für Frequenzumrichter- und Gleichstromantriebe	Braking resistors for frequency converters and DC drives	0,01	40,0			X		X	
		0,01	6,0	X				X	X
		6,0	30,0					X	X
		30,0	250						X
Belastungswiderstände für Spannungsquellen, Batterien, USV-Geräte, Generatoren und Netzgeräte	Load resistors for supply units, power packs, batteries, UPS units and generators	0,01	250				X		
Stufenlose Drehzahlverstellung von kleinen Gleich- und Wechselstrommotoren	Stepless variable speed adjustment for small AC and DC motors	0,01	1,5		X		X		
Feldsteller für Generatoren, Widerstände zur Strom- und Spannungsbegrenzung	Field rheostats for generators, resistors for current and voltage limitation	0,01	3,8	X	X				
Motorische Potentiometer als fernbetätigte Sollwertgeber	Motorised potentiometers as nominal value setters	0,01	1,5		X				
Widerstandsbaugruppen für Einbau in leistungselektronische Geräte	Resistor modules fitting into electronic power devices	0,01	0,75	X		X		X	
		0,3	2,0					X	
Anlass- und Stellwiderstände für Schleifringläufer- und Gleichstrommotoren	Starting and regulating resistors for slip-ring rotor and DC motors	0,15	30,0					X	
		0,5	250						X
Ständer-Vorschaltwiderstände für Kurzschlussläufermotoren	Stator series resistors for squirrel-cage motors	0,5	250						X
Strombegrenzungswiderstände zur Ladung und Entladung von Kondensatoren	Resistors for current limitation e.g. for charging and discharging of capacitors	0,01	1,0	X		X		X	
Experimentier- und Prüfwiderstände in Laboratorien, Schulen und Universitäten	Resistors for experimenting and testing in laboratories, schools and universities	0,01	50				X		
Widerstände zur Schutzbeschaltung, Filterwiderstände	Protective resistors, filter resistors	0,01	0,75	X		X		X	
		0,75	6,0	X				X	
		1,5	22,0						X

Wir über uns

Mit FRIZLEN Leistungswiderständen haben Sie elektrische Leistung voll im Griff.

Unser umfassendes Know-how zeigt sich im kompletten Spektrum vom Einzelstück bis zur Serie, für Leistungen von 5 Watt bis 250 Kilowatt.

Einsatz- und Anwendungsgebiete stellen die Anforderungen, die Lösungen entwickeln wir.

Ihrem Anforderungsprofil entsprechend berechnen und fertigen wir Widerstände und Widerstandskombinationen unter Berücksichtigung Ihrer Vorgaben. Natürlich beraten wir Sie gern und ermitteln auf Wunsch die Widerstandsdimensionierung mit Hilfe EDV-gestützter Berechnung und Simulation.

Hochwertige Standard- sowie Sonderlösungen von FRIZLEN sorgen für Dynamik im Verbund mit leistungselektronischen Geräten in Maschinen und Anlagen.
Bewegung zu stoppen, konstant zu halten und exakte Abläufe zu ermöglichen - dabei unterstützen wir die elektrische Antriebstechnik und verbessern so die Dynamik Ihrer Antriebe.

About us

Keep your electric power under control with FRIZLEN power resistors.

Our extensive know-how is demonstrated in a complete spectrum from single item up to series production, for power values from 5 watts up to 250 kilowatts. Different ranges of use and application set the requirements, we provide the solutions.

We design and produce resistors and resistor combinations exactly to meet your requirements. We are, of course, happy to advise you according to your specification. Upon request, we can determine resistor dimensioning using our computer-supported calculation and simulation system.

High-quality standard and special solutions from FRIZLEN ensure dynamics when you are dealing with high performance electrical equipment in machines and processes. We support electrically driven power engineering by stopping movement, keeping it constant and ensuring exact sequences, which improves the dynamics of your drive systems.

t 100 - DIE KLASSIKER / THE ORIGINAL ONES

Drahtgewickelte Rohrfestwiderstände 10 bis 6000 Watt

Drahtgewickelte Rohrfestwiderstände, aufgebaut als Einzelrohre, die einbaufähig sind und daraus aufgebaute Rohrfestwiderstandsgeräte in verschiedenen Schutz- und Befestigungsarten.

■ In zementierter und unzementierter Ausführung
■ Für Anschluss an Löt-, Schraub- oder Flachsteckanschlüssen, mit oder ohne Abgreifschellen

- Widerstandskombinationen bestehend aus einem bis sechs Rohren

■ Für Befestigung mit Gewindebolzen, Steckwinkeln oder Stirnblechen in Schutzart IPOO
■ Mit Gehäuse für waagerechte oder senkrechte Befestigung in Schutzart IP20, Anschluss an Klemmen

- Thermisches Überstromrelais, Temperaturschalter oder FRIZLEN DC-Powerswitch für thermische Überwachung und Abschaltung

Wirewound tubular fixed resistors 10 up to 6000 Watt

Wirewound tubular fixed resistors as individual components, that can be integrated into other units and composed to tubular fixed units in different degrees of protection and mounting types.

■ In cemented and uncemented version
■ Variable connections at soldering, fast-on or screw clips, with or without adjustable clips
■ Units consisting of one to six tubes
■ In degree of protection IPOO with threaded rods, fastening brackets or side-panels
■ In degree of protection IP20 with enclosure for horizontal and vertical mounting, connection on terminals

■ Thermal overload relay, temperature switch or FRIZLEN DC-Powerswitch for thermal monitoring and switch off

Contents

This list comprises wirewound tubular fixed resistors as individual components in uncemented version FU as well as in cemented version FZ as the standard version. All the components can be integrated into other units. The assembled tubular fixed resistor units are available in different degrees of protection and mounting methods.

maximum power	characteristics	type series	page
	general survey technical details		T102E
1000 W	suitable for integration,		T103-108E
44 W	for printed circuit board mounting	FZ...L /FU...L	T111E
300 W	with fastening brackets, loose and/or mounted	FZS /FUW	T112-113E
900 W	for vertical mounting	F..N /F..R /F..P	T114-115E
1000 W	with side-panels	FZ.H /FU.H	T116E
3000 W	with cover	FZ.A.	T117E
3000 W	with cover and terminals	FZ.M.	T118E
6000 W	with cover, terminals in terminal box	FZ.G. / FZ.C	T119-120E
6000 W	with thermal overload relay	FZ.T.	T121E
6000 W	with FRIZLEN DC-POWERSWITCH	FZ.X.	T122E

Properties

- Iow temperature coefficient
\Rightarrow constant ohmic value over a large temperature range (s. p. T103E)
- force locking fixation of wire using cementation
\Rightarrow good heat conducting properties
- variable resistance value adjustable by clips
\Rightarrow change and/or adjustment or trimming by the user (s. type series description)
- various diameters and lengths
\Rightarrow can be integrated, various possibilities for connection and mounting
- enclosures made from hot galvanised steel sheet
\Rightarrow various protection and mounting types
- low-noise and low-induction version available
\Rightarrow used for apartment buildings, hospitals, opera houses and theatres
- thermal overload relay or temperature switch available
\Rightarrow integrated warning for high operating security (serialized with series FZ..Q and F..T)
- intrinsically safe
\Rightarrow to switch off the resistor safely by FRIZLEN DC POWERSWITCH
- UL-recognition for American and Canadian market (E212934)
\Rightarrow on request for type series FZ.P., FZ.M., FZ.C and FZ.T..

Applications

- braking resistors for frequency converters and DC drives, in low-noise version also for hospitals and theatres.
- load resistors for supply units, power packs, batteries, UPS units and generators
- resistors for current and voltage limitation e.g. for charging and discharging of capacitors
- field rheostats for generators
- protection and damping resistors

T 100 －Survey

type series characteristics		$\begin{gathered} \hline \text { FZ } \\ \text { FU } \\ \text { FZB } \\ \text { FUB } \end{gathered}$	$\begin{gathered} \text { FZ..x.L } \\ + \\ + \\ \text { FU...x.L } \end{gathered}$	$\begin{aligned} & \hline \text { FZS } \\ & \text { FUS } \\ & \text { FZW } \\ & \text { FUW } \end{aligned}$	$\begin{aligned} & \text { F..N } \\ & \text { F..R } \\ & \text { F..P } \end{aligned}$	$\begin{gathered} \text { FZ.H } \\ + \\ \text { FU.H } \end{gathered}$	FZ．A	FZ．M	$\begin{gathered} \hline \text { FZ.G } \\ + \\ \text { FZ.C } \end{gathered}$	FZ．T	FZ．X
	page symbol	$\begin{gathered} \hline \text { T109E/ } \\ \text { T110E } \end{gathered}$	T111E	$\begin{aligned} & \hline \text { T112E/ } \\ & \text { T113E } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { T114E/ } \\ \text { T115E } \end{array}$	T116E	T117E	T118E	$\begin{aligned} & \hline \text { T119E/ } \\ & \text { T120E } \end{aligned}$	T121E	T122E
typical power from［W］		12	12	12	12	430	65	65	65	150	300
typical power up to［W］		1000	44	300	900	3000	3000	3000	6000	6000	6000
max．terminal／connection \＃ （without adjustable tap and temperature switch）		2	2	2	6	2	2	2	2	2	2
degree of protection IP00	$\begin{aligned} & \text { IP } \\ & 00 \end{aligned}$	X	X	X		X					
degree of protection IP20－if mounted on an appropriate surface	20^{\circledR}						X	X	X	X	X
degree of protection IP20 terminals protected against contact	$\begin{gathered} \text { IP } \\ 20^{(2)} \end{gathered}$				X			X			
integration possible	E	X	X	X		X					
horizontal mounting	$\sqrt{\text { sinh }}$						X	X	X	X	X
vertical mounting	猪						X	X	X	X	X
vertical mounting on mounting sheet	㝔萛				X						
thermal overload relay	${ }^{6}$									X	
adjustable clip available	-4	X		X	X	X	X				
temperature switch（optional）	$-{ }^{9}$	X		X	X	X	X	X	X		
FRIZLEN DC－POWERSWITCH											X
with c TUU recognition					$\underset{\text { (only FZ.P) }}{\mathrm{X}}$			X	$\underset{\text { (only FZ.C) }}{\mathrm{X}}$	X	

Rights for improvements and modifications of our products reserved． Modifications，errors and misprints justify no claim for damages． We refer to our terms of sales and delivery．

Technical details

Construction

Type series FZ.

Type series FU..

> Resistance values/ Production tolerance/ Temperature dependency

Preferred ohmic values

The basis are high quality ceramic or porcelain tubes with diameters of 16, 24, 35, 45 and 65 mm . We use round wires or bands that are made from various alloys, but mainly from CuNi 44 according to DIN 17471, 46460-1 and 46461 or NiCr 3020 and/or CrAl 255 according to DIN 17470.

Above mentioned wires are wound with pitch and are used for cement coated fixed and adjustable resistors. (FZ..) Then they are fixed by a special cement coat. The selection of a tubular fixed resistor for continuous dissipation is only determined by the size of the surface, that means the size of tube, and by the maximum allowable temperature on the surface. We highly recommend this construction type for all standard applications as well as for short time operations with braking resistors.

If a very high short time power should be dissipated on the smallest possible surface, this energy must be absorbed by the weight of the resistance material within the first second. For producing our uncemented tubular resistors we wind an oxidized wire without gap. Its oxidation functions as insulation. The wire is not protected by a cement coat. If you compare this type to the cemented one you will reach much higher wire weights on the very same surface. Therefore this version is constructed for a very high, not pulsating amount of energy during a short time, like during charging or discharging of capacitors. You will pick this version when you are dealing with single switching operations.

For slide resistors, please look at our technical list T400E.

The resistance values in the column "production range" refer to our standard production range and appear in row E12*. Please select from there. Different values upon request. The normal tolerance is $\pm 10 \%$. Smaller tolerances upon request. The resistance value will change slightly in dependency of the winding temperature. With $\Delta \mathrm{T} \approx 300 \mathrm{~K}$ the resistance will change compared to a cooled down condition as follows: with wires made of CuNi 44 approx. $\pm 1 \%$, made of CrAl 255 approx. $+1 \%$ and made of NiCr 3020 approx. $+10 \%$. We select the alloys corresponding to the resistance values or to demand. You will find indications concerning temperatures on page T105E and T106E.
*E12: multiplication or division by integer potencies of 10 with the following values: 1,0-1,2-1,5-1,8-2,2-2,7-3,3-3,9-4,7-5,6-6,8-8,2

Time constant

The average thermal time constant is 300 s .

Adjustable clips

Tubular fixed resistors of different type series can be flexibly equipped with adjustable clips to adapt the resistance values (compare e.g. page T109E, T111E$114 \mathrm{E}, \mathrm{T} 116 \mathrm{E}$ and T117E). The clips may only be adjusted in a condition free of voltage and after sufficient loosening and cooling. All our adjustable clips are equipped with silver contacts. When selecting please consider that the maximum temperature on the surface should not exceed $300^{\circ} \mathrm{C}$. Please mind the details on pages T106E and T107E, too.

Tubular fixed resistors

Degrees of protection

IP
00
IP
20^{\oplus}
IP
$20^{®(2)}$

Air and creepage
distances

Protective measures

C

UL-Recognition ${ }_{c} \mathrm{D}_{\text {us }}$

Excess current protection

Correlation of type series and degrees of protection according to EN 60529 and/or DIN VDE 0470 part 1

Type series	Degree of protection	First digit degree of protection against access \& solid foreign objects	Second digit degree of protection against water
$\begin{aligned} & \hline \text { FZ., FU. } \\ & \text { F.S., F.W., } \\ & \text { F.H. } \end{aligned}$	IP 00	Non-protected - i.e. depending upon integration the user must provide a protection	Non-protected
$\begin{aligned} & \hline \text { F..A, F..C, } \\ & \text { F..G, F..M, } \\ & \text { F..T. F..X } \\ & \hline \end{aligned}$	IP $20^{(1)}$	Protected against access to hazardous parts with a finger and against solid foreign objects of $12,5 \mathrm{~mm} \varnothing$ and greater.	Non-protected
$\begin{aligned} & \text { F..N, } \\ & \text { F..R, } \\ & \text { F..P } \end{aligned}$	IP $20{ }^{(2)}$		Non-protected

${ }^{{ }^{\text {if }} \text { if mounted on an appropriate surface - i.e. mounted on a surface according to degree of }}$ protection IP 20 or higher
${ }^{(2)}$ Terminals are protected against access to hazardous parts according to BGV A2

Air and creepage distances are rated according to IEC 664 (DIN EN 0110 part 1) for the overvoltage category III and degree of pollution 3 for grounded three-phase mains supplies up to $3 \times 500 \mathrm{~V}$. Testing voltage 2.5 kV AC.
These data are valid for all devices that are connected to mains voltage and derived voltages, as for example the intermediate circuit voltage of frequency converters.
Do not conclude from the calculated relation between the rated power and the maximum producible ohmic value to the rated voltage!

All our power resistors with degree of protection IP $20^{(1)}$ and $\mathrm{IP} 20^{\circ}$, correspond to safety class I, i.e. connections for protective earth conductor according to EN 61140 are provided.

These devices also comply with the CE low voltage directive.
Power resistors being passive electronical or electrical units are not affected by the specific EMC standards. They do not produce any interfering radiations nor are they affected.

Some important type series can be delivered in a version with UL-recognition both for the American and for the Canadian market. The devices are UL 508 approved, number E212934. This recognition is the same as a recognition according to CSA C22.2 No.14. For further information please check the UL-flyer. (Please ask for it or visit us at www.frizlen.com)

A protection of the resistors against overloading or excess temperature - as demanded in standards - can be realized with the help of a thermal overload relay provided by the user. The set current must correspond to the rated current of the resistor, that is calculated according to continuous duty power and resistance value corresponding to Ohm's law (formula: see "terminal details" p. T108E)
Concerning the series FZ..T the thermal overload relay is a component of the device - with exceeding of the rated current a signal contact is released. There will not be a disconnection of the resistor. Resetting by hand.

Excess temperature protection

Intrinsically safe version with FRIZLEN DC-POWERSWITCH

Contact rating

Storage temperature/ Operation temperature/ Installation altitude

Another kind of the excess temperature monitoring, particularly suited for long-term overloading, is the equipment with a temperature switch. In IP 20-resistor devices it is wired on terminals, in IP 00 resistors the switch is directly connectable and releases a signal contact, when the set temperature is exceeded. There will not be a disconnection of the resistor.

You can inform yourselfs about function and restrictions by our data sheet „Tripping of monitoring devices".
We can send it to you on request.

Integrated overload switch for a maximum of 850 VDC to protect the resistor. It protects the integrated resistor against constant overload and against too high short time peak power, e.g. caused by a false operational mode or a fault by an short circuited chopper transistor. Possible damage in the environment by overheating and burning are effectively avoided.
So you receive an intrinsically safe resistor protection degree even for IP20 ${ }^{(1}$. The FRIZLEN DC-POWERSWITCH can also be integrated in the switch cabinet.
After a successful fault clearance the DC-POWERSWITCH can be switched on like a normal automatic cutout.
We can send you more technical details and characteristics on request.

Attention: FRIZLEN DC-POWERSWITCH are only suited for monitoring and disconnecting from DC-voltage with pure resistive load (DC1) up to 850 VDC.

Contact ratings of the signal contacts of temperature switches and thermal overload relays.

- 2 A / 24 VDC (DC11)
- 2 A / 230 VAC (AC11)

Contact ratings of the signal contacts of the DC-POWERSWITCH:

- 5 A / 24 VDC (DC11)
- $10 \mathrm{~A} / 230$ VAC (AC11)

Storage temperature: $\quad-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Operation temperature: $-30^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. If the ambient temperature is higher than $40^{\circ} \mathrm{C}$, you have to decrease the continuous dissipation by 4% per 10 K temperature rise!
2000 m above sea level, you have to decrease the continuous dissipation for 10% per 1000 m altitude, maximum altitude 5000 m above sea level

Restrictions are to be made for the type series FZ.T. and FZ.X. because of the built-in monitoring device. Operation temperature: $-20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$

Typical power/ Continuous dissipation/ Ventilation/ Temperatures

The given typical power values are valid for 100\% duty cycle factor (DCF) (continuous dissipation) under the following conditions:

- temperature rise of 200 K at the surface of fixed resistor enclosures (degree of protection> IP00)
- temperature rise of 300 K at the surface of fixed resistor elements (degree of protection IP00)
- unhindered access of cooling air
- unhindered diverting of warmed up air (mind a minimum separation distance of approx. 200 mm to neighbouring components/walls and of approx. 300 mm to components above/ceiling)

Ventilation/ Temperatures

Since electrical energy is converted into heat, heating up of the exhaust air and of the enclosure at the air outlet is inevitable.
The highest temperature at typical power may be maximum $200^{\circ} \mathrm{C}$ above the ambient temperature. Since the cooling of the devices is accomplished by convection, the above mentioned aspects have absolutely to be considered.

In cases of insufficient cooling or false mounting the resistor or the surrounding devices could be overheated or ruined.

Depending upon use it can be possible to increase the continuous dissipation of the resistors, if higher temperatures are accepted. With an increase of e.g. 130% of the typical power you will have a rise in temperature of 350 K at the surface of the resistor. In other cases of application the continuous dissipation must be reduced, for example with temperature sensitive devices in the surrounding area. The dependence between temperature rise and actual continuous dissipation is shown in the diagram below.

Excess temperature in dependence of continuous dissipation

Normal operation range (up to 130\%):

Recommended operation range for maximum product life and failure free operation Allowable threshold (up to 160\%):
Allowable operation range, danger of shorter product life and higher failure probability Unallowable operation range (more than 160\%):
Danger of excessive heat and destruction of resistor and neighbouring components

Short time dissipation/ Total cycle time/ Duty cycle factor(DCF)

Calculation example given:
wanted: continuous dissipation

At many applications resistors are not loaded in continuous but in short time operation. In the following you will find indications, how to calculate the allowable short time dissipation with the help of the duty cycle factor (DCF) and the overload factor (OLF). If the DCF factor is not known, it can be calculated as follows:

$$
\text { Duty cycle factor }(D C F)=\frac{\text { Switch on time }\left(t_{\text {on }}\right)}{\text { Total cycle time }}
$$

$D C F_{1}=\frac{48 \mathrm{~s}}{120 \mathrm{~s}}=0,4=40 \%$

$D C F_{2}=\frac{7,5 s}{30 s}=0,25=25 \%$

Warning: The total cycle time may be maximum 120 s shorter total cycle times are possible. The total cycle times for motors are mostly higher than 120 s

By comparison of the known DCF-factor with the following diagram or table you can work out the overload factor (OLF) and/or the continuous and the short time dissipation.

Overload factor (OLF) in dependence of duty cycle factor (DCF) (Total cycle time $=120 \mathrm{~s}$)

DCF	1%	3%	6%	15%	25%	40%	60%	80%	100%
OLF	30	15	9,5	5,0	3,2	2,2	1,5	1,12	1,0

The continuous and the short time dissipation can be calculated as follows:

$$
\begin{aligned}
& \text { Short time dissipation }=\text { Continuous dissipation } \times \text { OLF } \\
& \text { Continuous dissipation }=\frac{\text { Short time dissipation }}{\text { Overload factor }(O L F)}
\end{aligned}
$$

- Resistor with a short time dissipation of $2,5 \mathrm{~kW}$ for 18 s and a total cycle time of 120s
- The duty cycle factor (DCF) is $18 \mathrm{~s}: 120 \mathrm{~s} \times 100 \%=15 \%$
- Overload factor (OLF) for 15% DCF, according to table it is 5,0
- The continuous dissipation is $2,5 \mathrm{~kW}: 5,0=0,5 \mathrm{~kW}$;

You need a resistor with a continuous dissipation of at least $0,5 \mathrm{~kW}$!

Terminal details/ Monitoring devices/ Cross section

Wiring If terminals are delivered by us, the connections are wired with flexible, heat resistant, silicone-insulated wire on terminals (further wires on request). If the wiring is accomplished by the customer, make sure that a heat resistant wire is used.

By means of a bifilar winding we are able to provide a low-noise and low-inductive version for operations in noise sensible areas, such as braking resistors for frequency converters for lift motors in hospitals or apartment houses. The same is valid for hoist motors on theatre stages.

Please mind the mounting indications of the corresponding type series! You will find these icons in the data sheets.

Allowable: On horizontal surfaces

Allowable: On vertical surfaces, terminals at the bottom

Allowable: Mounting vertical to the mounting sheet, terminals at the bottom

Not allowable: On vertical surfaces, terminals at the top, left or right

Not allowable: On horizontal surfaces, terminals at the top

Type series FZ／FU
 Type series FZB／FUB

Technologies

－connection directly at the resistor
－optional，depending on construction size with screw，fast－on or soldering connection
－adjustable clips（Ags．）available （please mind the hints on this page and on the following one）
－with type series F．B．．only small mounting space is needed
－mounting in switch cabinets
We provide M3 screw connections for construction sizes with diameters $D=16$ and M4 with $\mathrm{D}=24 / 35 / 45 \mathrm{M} 5$ with $\mathrm{D}=65$ ． Also fast－on connections（ $6,3 \times 0,8$ ）are available for sizes with $D=24 / 35 / 45$ ．
For sizes with $D=16$ the soldering connections can also be used as fast－on connections（ $4,8 \times 0,5$ ）．
You will find the electrical and mechanical data on the next page．

You will find indications for the relationship between load capacity and temperature on the surface as well as for the dimensioning of the resistor at short term load in chapter＂Technical Details＂，pages T103E－T108E．

Application

As ballast，limiting，filter or series resistors etc．for integration into devices and customised units．Our type series F．B．．is very well applicable in switch cabinets．We fix the threaded rod for you in a space－saving way．Efficient use in your manufacturing systems．

Special design

－various tube sizes as well as lower and higher ohmic values on request
－beginning with size $\mathrm{D}=24$ also with temperature switch（TS）
with fast－on connections $6,3 \times 0,8$
－soldering connections，pretinned

12 － 1000 W for integration 12－300 W with threaded rod

E

Cemented（FZ）and uncemented（FU）wirewound tubular fixed resistor，degree of protection IP00．
Type series F．B additionally with mounted threaded rod，fixing vertically to mounting surface．
Variable connections at the soldering，fast－on or screw clips＊on the resistor．
＊Particular specifications for „low ohmic values＂－for details please look on the following page

Type designation（standard）

Types with soldering connections（ $4,8 \times 0,5$ ）

size	without adjustable clips （Ags．）	with 1 Ags．	with n Ags．
$\mathrm{D}=16$	FZ．．x16A	FZ．．．x16AE	FZ．．．x16AnE

Types with fast－on connections（ $6,3 \times 0,8$ ，also solderable）

size	without adjustable clips （Ags．）	with 1 Ags．	with n Ags．
$\mathrm{D}=24$	FZ．．．24S	FZ．．．24ST	FZ．．．24SnT
$\mathrm{D}=35$	FZ．．．35S	FZ．．x35ST	FZ．．x35SnT
$\mathrm{D}=45$	FZ．．．45S	FZ．．．45ST	FZ．．．455SnT

Types with screw connections（M3／M4／M5）

size	without adjustable clips （Ags．）	with 1 Ags．	with n Ags．
D＝16	FZ．．x16	FZ．．x16F	FZ．．x16 Fn
up to	\ldots	$\ldots .$.	$\ldots .$.
D＝65	FZ．．x65	FZ．．x65F	FZ．．x65 Fn

Hints for the versions with adjustable clips

For the cemented fixed resistors with adjustable clip we decrease the available maximum ohmic value．Since otherwise while adjusting the clip，the danger of breaking the wire would be too large because of too thin wires．The adjustable clip may only be adjusted in a condition free of voltage and after sufficient loosening and cooling．All the adjustable clips of our fixed resistors in tubular version are equipped with silver contacts．When selecting please consider that the maximum surface temperature（ST）should not exceed $300^{\circ} \mathrm{C}$ ．

Please consider as well that the resistance value may be reduced with versions where several adjustable clips are combined，especially in the lower range of ohmic values and with short tube lengths．In that case we have to select a higher total ohmic value．

Example of dimensioning and selection of a specific unit：

Adjustable power resistor for mounting into a switch cabinet with 2 additional taps： continuous dissipation 150 W ；resistance value 100Ω ；rating 110 V DC，mounting by threaded rod on mounting plate，adjustable resistance taps by 2 adjustable clips， connection at fast－on clips，
Selected：FZB 200×35 S2T－ 100 with continuous dissipation 150 W
Alternatively：FZB 160×45 S2T－ 100 （continuous dissipation also 150W）

Type series FZ / FU
12-1000 W for integration
Type series FZB / FUB

Electrical and mechanical data

*when equipped with an additional adjustable clip, maximum dimension for the version with screw connection is dimension G instead of dimension F! (Comparable to types with fast-on connection) ** for smaller resistor values M5, more details on request

FZ / FU 50x16.. up to FZ / FU 100x16.. (not shown) and FZB / FUB 50x16.. up to FZB / FUB 100x16.. (shown)

FZ / FU 75x24.. up to FZ / FU 300x45.. (not shown) and FZB / FUB 75x24.. up to FZB / FUB 300x45.. (shown)

FZ / FU 300x65 up to FZ / FU 600x65 (shown)

with additional adjustable clip(s)
For detailed information, e.g. referring to special tube cross sections, ask for our dimension sheets 11 M 0318 , 11M0319, 11M0320, 11M0321, 11M0322 or 11M0323, or just dial the phone number below.

Type series FZ...L / FU...L

Technologies

- connection and mounting directly by means of the resistor soldering clips
- mounting directly on PCB

The given power values can be essentially increased during short time operation as a function of the duty cycle factor (DCF) The peak power can be easily calculated. Just multiply the values by the corresponding overload factors (OLF) of this table:

DCF	60%	40%	25%	15%	6%
OLF	1,5	2,2	3,2	5,0	9,5

These overload factors OLF are valid for a total cycle time of maximum 120 s

You will find further indications in chapter "Technical Details", pages T103E-T108E.

Application

As ballast, limiting, filter or series resistors on printed circuit boards.

Reliable and efficient manufacturing process by optionally pretinned soldering connections.

12-44 W with soldering clips, for mounting on a printed circuit board

Cemented wirewound tubular fixed resistor, degree of protection IP00, for soldering on printed circuit boards, mounting and connection by soldering clips horizontal to mounting surface. Connections pretinned.

Electrical and mechanical data

Type series	typical power in W	production range Ω-value		dimensions in mm		approx. weighting
(standard) /FU..L L×D	$\begin{gathered} 100 \% \mathrm{DCF} \\ \text { and } 300^{\circ} \mathrm{C} \\ \mathrm{ST} \end{gathered}$	from	up to	L	E	
F. $50 \times 16 \mathrm{~L}$	12	0,27	6,8k	50	34	45
F. $63 \times 16 \mathrm{~L}$	18	0,39	10k	63	45	55
F. 100x16L	34	0,68	18k	100	82	65
F. $75 \times 24 \mathrm{~L}$	32	0,33	18k	75	55	120
F. 100x24L	44	0,47	27k	100	78	320

Special design

- Special sizes on request

Example of dimensioning and selection of a specific unit:

resistor for mounting on a printed circuit board : continuous dissipation 30 W ; resistance value $1 \mathrm{k} \Omega$;
selected: FZ 75x24 L - 1 k with continuous dissipation 32 W

Type series FZS / FUS

Technologies

- connections directly at the resistor
- optional with either screw, fast-on or soldering connections
- integration into switch cabinets
- adjustable clips available
- insertable fastening brackets are enclosed loose.

The given power values are valid for 100% DCF (continuous dissipation) at an ambient temperature of max. $40^{\circ} \mathrm{C}$ and a surface temperature (ST) of $300^{\circ} \mathrm{C}$. The values can be increased by the factor 1,3. Then the ST will increase up to approx. $350^{\circ} \mathrm{C}$.
The given power values can be essentially increased during short time operation as a function of the duty cycle factor (DCF) The peak power can be easily calculated. Just multiply the values by the corresponding overload factors (OLF) of this table:

DCF	60%	40%	25%	15%	6%
OLF	1,5	2,2	3,2	5,0	9,5

These overload factors are valid for a total cycle time of maximum 120 s .

Application

As ballast, limiting, filter or series resistors etc in switch cabinets or electric devices.
Low price and efficient operation by the easy and quick application of insertable fastening brackets in manufacturing.

Special design

- from construction size $\mathrm{D}=24$ on with temperature switch (TS) with fast-on connections 6,3 $\times 0,8$
$12-250 \mathrm{~W}$ with fastening brackets

Cemented wirewound tubular fixed resistor, degree of protection IPOO, with insertable fastening brackets which are enclosed loose, fixing parallel to mounting surface. Connections by screw, fast-on or soldering clips of the resistor*.
*For available connection types and designations please see pages T109E/110E

Electrical and mechanical data

For further details concerning the ohmic values please see pages T109E/110E.
FZS/FUS 50x16.. up to FZS/FUS 100x16..

Type series FZW / FUW

Technologies

- connections directly at the resistor
- optional with either screw, fast-on or soldering connection
- integration into switch cabinets
- adjustable clips available
- with screwed fastening brackets

The given power values are valid for 100% DCF (continuous dissipation) at an ambient temperature of max. $40^{\circ} \mathrm{C}$ and a surface temperature (ST) of $300^{\circ} \mathrm{C}$. The values can be increased by the factor 1,3 . Then the ST will increase up to approx. $350^{\circ} \mathrm{C}$.
The given power values can be essentially increased during short time operation as a function of the duty cycle factor (DCF) The peak power can be easily calculated. Just multiply the values by the corresponding overload factors (OLF) of this table:

DCF	60%	40%	25%	15%	6%
OLF	1,5	2,2	3,2	5,0	9,5

These overload factors are valid for a total cycle time of maximum 120 s .

Application

As ballast, limiting, filter or series resistors etc in switch cabinets or electric devices.
Efficient operation by the prefixed screwed fastening brackets in a range of industries.

Special design

- from construction size $\mathrm{D}=24$ on with temperature switch (TS) with
fast-on connections $6,3 \times 0,8$

How to order: Example:

Continuous dissipation 250 W , resistance value $5,6 \Omega$ Is to be wired at fast-on connections (without adjustable clip)
Type designation then:
FZW 330x35 S - 5,6
$12-300 \mathrm{~W}$ with screwed fastening brackets

Cemented wirewound tubular fixed resistor, degree of protection IPOO, with screwed fastening brackets, fixing parallel to mounting surface. Connections at screw, fast-on or soldering clips of the resistor*.
*For available connection types and designations please see pages T109E/110E

Electrical and mechanical data

For further details concerning the ohmic values please see pages T109E/110E.
FZW/FUW 50x16.. up to FZW/FUW 100x16..

FZW/FUW 75x24.. up to FZW/FUW 300×45..

11 M 0324 / 11 M 0325

Type series FZP / FZN / FZR and FUP/FUN/FUR

Technologies

- protected against access to hazardous parts
- only small fixing space needed
- mounting vertically on mounting plate
- connections at terminals or at screw or fast-on clips
- adjustable clips (Ags.) available with type series FZR, FUR, FZN, FUN

Option: temperature switch (..Q) Available for type series FZP beginning with size $D=24 \mathrm{~mm}$, for $\mathrm{D}=45$ only in larger enclosure with width of $87,5 \mathrm{~mm}$ instead of 65 mm .

This type can be equipped with a $180^{\circ} \mathrm{C}$ temperature switch for monitoring. The switch is wired on porcelain terminals and signals an overloading of the resistor. This is done by a normally closed contact free of potential (NCC). This signal has to be considered by the customer, e.g. by warning or disconnection of the mains. (Restrictions please look on page T105E).

Warning: There will not be a disconnection of the resistor! Type designation then: FZPQ ..

Contact rating of the signal contact:

- 2 A / 24 VDC (DC11)
- 2 A / 230 VAC (AC11)

You will find suggestions for the dimensioning of the resistor for continuous and short term load at chapter Technical Details, pages T106E and T107E.

Application

This type is used as a ballast, limiting, filter or series resistor and is perfectly suited for integration into switch cabinets.

Special design

- we provide polyamide device terminals G5

12 - 300 W for vertical mounting

${ }^{6} \mathrm{TNS}_{\text {us }}^{\circ}$

20^{IP}

Cemented wirewound tubular fixed resistor in one-tube design, degree of protection $\mathrm{IP} 20^{(2)}$, in perforated steel sheet enclosure, mounting vertical to mounting surface, connections optionally at terminals or at screw or fast-on clips at the resistor. For integration into switch cabinets.
${ }^{(2)}$ terminals protected against access to hazardous parts according to BGV A2
${ }^{(3)}$ optional for $D=45$, type designation would be FZP.U .., width $87,5 \mathrm{~mm}$ instead of 65 mm (construction with device terminals G10/G5)

Description of the different types

Type F.P (Standard)
2 connections wired on a porcelain terminal, which is accessible without demounting the cover and protected against access to hazardous parts according to BGV A2. The terminal is fixed on the enclosure front plate. Adjustable clip not available. Temperature switch available.

Type F.N
2 connections wired on a porcelain terminal, which is accessible without demounting the cover and protected against access to hazardous parts according to BGV A2. The terminal is fixed on the enclosure bottom plate. Adjustable clips available. Temperature switch not available.

Type F.R
2 connections directly at the resistor, which are accessible after unscrewing the enclosure front plate. Adjustable clips available. Temperature switch not available.

Electrical and mechanical data

Type series FZP (standard)	typical power in W at $40^{\circ} \mathrm{C}$,	production range Ω-value		dimensions in mm		approx. weightin g
$\begin{array}{ll} \text { /F.N /F.R } & \\ \text { L x D } & (* *) \\ \hline \end{array}$	100\%DCF	from	up to	D*	H^{*}	
F.P 50x16 (A)	12	0,27	6,8k	100	141	330
F.P 63x16 (A)	18	0,39	10k	100	141	340
F.P 100x16 (A)	34	0,68	18k	100	141	350
F.P 75x24 (S)	32	0,1	18k	100	141	370
F.P 100x24 (S)	44	0,15	22k	100	141	400
F.P 165x24 (S)	80	0,33	12k	100	238	500
F.P 100x35 (S)	65	0,22	18k	100	141	500
F.P 135x35 (S)	100	0,33	10k	100	238	600
F.P 200x35 (S)	150	0,56	6,8k	100	238	700
F.P 160x45 (S)	150	0,47	6,8k	100	238	700
F.P 200x45 (S)	180	0,68	5,6k	100	238	800
F.P 300x45 (S)	300	1,2	3,9k	100	336	1100

(**)Type series F.P/F.N are generally equipped with fast-on clips. Type designation would be ..A or ..S. except for low ohmic values. As far as type series F.R is concerned, you are free to choose. For further details please see pages $\mathrm{T} 109 \mathrm{E} / 110 \mathrm{E}$.
F.P... / F.N... / F.R...(type F.P is shown here)

*
dimension H is 10 mm smaller for types FZN \&. FZR!
dimension D is 12 mm bigger for type FZN!

Type series FZZP / FZDP and FUZP / FUDP

Technologies

- protected against access to hazardous parts
- only small fixing space needed
- vertical mounting on mounting plate
- two - or three-phase version, also available with star point in the unit, i.e. connections at $2,3,4$ or 6 terminals

Option: temperature switch (..Q)

- beginning with size $D=24 \mathrm{~mm}$ only!

This type can be equipped with a $180^{\circ} \mathrm{C}$ temperature switch for temperature monitoring. It is wired on porcelain terminals and monitors an overloading of the resistor by a normally closed contact free of potential (NCC). This signal has to be considered by the customer e.g. by a warning or disconnection of the mains. (Restrictions please look on page T105E).

Warning: There will not be a disconnection of the resistor! Type designation then: FZ.PQ ...

Contact rating of the signal contact:

- 2 A/24 VDC (DC11)
- 2 A / 230 VAC (AC11)

You will find suggestions for the dimensioning of the resistor for continuous and short term load at chapter Technical Details, pages T106E and T107E.

Application

This type is used for limiting the switchon current and for short - circuit braking in a three-phase version. Also as filter, braking or series resistor in a one- or two-phase version.
It is perfectly suited for integration into switch cabinets.

Special design

- with polyamide device terminals G5 (max. 6 term. without TS or 3 term. with TS)

Cemented wirewound tubular fixed resistor in two-tubes (F.ZP) or three-tubes design (F.DP), degree of protection $\operatorname{IP} 20^{\circledR}$, in perforated steel sheet enclosure, mounting vertical to mounting surface. For integration into switch cabinets. Standard version:
One-phase resistor with 2 connections at terminals on the enclosure front plate.
${ }^{(2)}$ terminals protected against access to hazardous parts according to BGV A2
${ }^{(3)}$ optional for $D=45$, type designation would be FZ.P.U..
(version with device terminals G10/G5)

Electrical and mechanical data

Type series FZ.P (standard) /F..N /F..R LxD (*)	typical power in W at $40^{\circ} \mathrm{C}$, 100\% DCF	production range Ω-value		dimensions in mm				approx. weight in
		from	up to	A	B	C	H	
F.ZP 50x16 (A)	24	0,47	12k	22,5	87,5	67,5	123	0,42
F.ZP 63x16(A)	36	0,68	18k	22,5	87,5	67,5	123	0,43
F.ZP 100x16(A)	68	1,2	15k	22,5	87,5	67,5	123	0,45
F.ZP. 75x24 (S)	64	0,18	18k	45	110	90	123	0,62
F.ZP. 100x24 (S)	88	0,27	8,2k	45	110	90	123	0,70
F.ZP. 165x24 (S)	160	0,56	6,8k	45	110	90	190	0,85
F.ZP. 100x35 (S)	130	0,39	8,2k	75	140	120	220	1,20
F.ZP. 135x35 (S)	200	0,56	5,6k	75	140	120	220	1,30
F.ZP. 200x35 (S)	300	1,0	3,9k	75	140	120	220	1,40
F.ZP. 160x45 (S)	300	0,82	3,9k	105	178	150	220	1,40
F.ZP. 200x45 (S)	360	1,2	2,7k	105	178	150	220	1,50
F.ZP. 300x45 (S)	600	2,2	1,8k	105	178	150	318	2,00
F.DP 50x16 (A)	36	0,82	27k	22,5	87,5	67,5	123	0,45
F.DP 63x16 (A)	54	1,0	18k	22,5	87,5	67,5	123	0,47
F.DP 100x16 (A)	102	1,8	10k	22,5	87,5	67,5	123	0,50
F.DP. 75×24 (S)	96	0,27	12k	45	110	90	123	0,70
F.DP. 100x24 (S)	132	0,47	8,2k	45	110	90	123	0,80
F.DP. 165x24 (S)	240	1,0	4,7k	45	110	90	190	1,10
F.DP. 100x35 (S)	195	0,68	5,6k	75	140	120	220	1,30
F.DP. 135x35 (S)	300	1,0	3,9k	75	140	120	220	1,40
F.DP. 200x35 (S)	450	1,5	2,7k	75	140	120	220	1,60
F.DP. 160x45 (S)	450	1,2	2,7k	105	178	150	220	1,60
F.DP. 200x45 (S)	540	1,8	1,8k	105	178	150	220	1,90
F.DP. 300x45 (S)	900	3,3	1,2k	105	178	150	318	2,50

(*)The versions above are generally equipped with fast-on clips. Type designation would be ..A or ..S. except for: low ohmic values. For further details please see pages T109E/110E.

Example:
Continuous dissipation $3 \times 150 \mathrm{~W}$, resistance value $3 \times 120 \Omega$, star point in the device (connection at 3 porcelain terminals) Ordering designation: FZDP 200x35S - 3x120

Type series FZH / FZZH / FZDH

Technologies

- connection directly at the resistor
- integration into switch cabinets
- adjustable clips possible

The given power values are valid for 100% DCF (continuous dissipation) at an ambient temperature of max. $40^{\circ} \mathrm{C}$ and a surface temperature (ST) of $300^{\circ} \mathrm{C}$. The values can be increased by the factor 1,3 . Then the ST will increase up to approx. $350^{\circ} \mathrm{C}$.
The given power values can be essentially increased during short time operation as a function of the duty cycle factor (DCF) The peak power can be easily calculated. Just multiply the values by the corresponding overload factors (OLF) of this table:

DCF	60%	40%	25%	15%	6%
OLF	1,5	2,2	3,2	5,0	9,5

These overload factors are valid for a total cycle time of maximum 120 s .

Application

Various applications derive from the compact construction form. Is to be integrated into a switch cabinet.

This low price alternative is suitable for educational modelling applications e.g. with protected extra-low voltage.

Special design

- with temperature switch (TS), type designation then FZ.HQ, connection of the TS at fast-on connections $6,3 \mathrm{x}$ 0,8

Cemented wirewound tubular fixed resistor, degree of protection IPOO with sidepanels, fixing parallel to mounting surface. Connections at screw or fast-on clips at the resistor.

Electrical and mechanical data

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Type series \& typical
power in
W at
$40^{\circ} \mathrm{C}$,
100%
DCF
as well as
$300^{\circ} \mathrm{C} \mathrm{ST}$ \& \multicolumn{2}{|l|}{production range Ω-value} \& H \& dim

M \& ions \& mm

R \& U \& | approx. |
| :--- |
| weight |
| in |
| kg |

\hline FZH 300x65 \& 430 \& 6,8 \& 47k \& 120 \& 320 \& 340 \& 92 \& 64 \& 1,5

\hline FZH 400x65 \& 600 \& 10 \& 68k \& 120 \& 420 \& 440 \& 92 \& 64 \& 1,9

\hline FZH 500x65 \& 800 \& 12 \& 82k \& 120 \& 520 \& 540 \& 92 \& 64 \& 2,2

\hline FZH 600x65 \& 1000 \& 15 \& 100k \& 120 \& 620 \& 640 \& 92 \& 64 \& 2,6

\hline FZZH 300x65 \& 860 \& 3,9 \& 82k \& 120 \& 320 \& 340 \& 185 \& 150 \& 3,0

\hline FZZH 400x65 \& 1200 \& 5,6 \& 120k \& 120 \& 420 \& 440 \& 185 \& 150 \& 3,8

\hline FZZH 500x65 \& 1600 \& 6,8 \& 150k \& 120 \& 520 \& 540 \& 185 \& 150 \& 4,4

\hline FZZH 600x65 \& 2000 \& 8,2 \& 180k \& 120 \& 620 \& 640 \& 185 \& 150 \& 5,2

\hline FZDH 300x65 \& 1300 \& 2,7 \& 82k \& 120 \& 320 \& 340 \& 275 \& 240 \& 4,5

\hline FZDH 400x65 \& 1800 \& 3,3 \& 120k \& 120 \& 420 \& 440 \& 275 \& 240 \& 5,7

\hline FZDH 500x65 \& 2400 \& 3,9 \& 150k \& 120 \& 520 \& 540 \& 275 \& 240 \& 6,6

\hline FZDH 600x65 \& 3000 \& 5,6 \& 180k \& 120 \& 620 \& 640 \& 275 \& 240 \& 7,8

\hline
\end{tabular}

For further details concerning the range of ohmic values with adjustable clips please see pages T109E/110E.

Example of dimensioning and selection of a specific unit:

one-phase load resistor for experimental setup:
Continuous dissipation approx.. 350 W at $7,5 \Omega$; resistance value adjustable between about $5-15 \Omega$; rating voltage 50 V DC, resistance value variable by additional adjustable clip, connection at screw connections,
selected: FZH $500 \times 65 \mathrm{~F}-15$ with continuous dissipation 800 W (400 W at R/2)

Type series FZA / FZZA / FZDA

Technologies

- low price version protected against access to hazardous parts
- connections at screw clips at the resistor
- wall mounting or mounting on switch cabinets
- adjustable clips available

The given power values are valid for 100% DCF (continuous dissipation) at an ambient temperature of max. $40^{\circ} \mathrm{C}$ and a surface temperature (ST) of $300^{\circ} \mathrm{C}$. The values can be increased by the factor 1,3. Then the ST will increase up to approx. $350^{\circ} \mathrm{C}$.
The given power values can be essentially increased during short time operation as a function of the duty cycle factor (DCF) The peak power can be easily calculated. Just multiply the values by the corresponding overload factors (OLF) of this table:

DCF	60%	40%	25%	15%	6%
OLF	1,5	2,2	3,2	5,0	9,5

These overload factors are valid for a total cycle time of maximum 120 s

Application

An important application is the use as damping resistor in switch plants.

Various applications derive from the compact construction form for wall mounting and mounting on or in a switch cabinet or switch plant.

Special design

- with temperature switch (TS) - type designation then FZ.AQ, connection of the TS at fast-on connections 6,3 x 0,8
- with fast-on clips $6,3 \times 0,8$

Cemented wirewound tubular fixed resistor in one-, two- or three-tubes design, degree of protection IP20 if mounted on an appropriate surface, with sidepanels and perforated cover. Fixing parallel to mounting surface. Connections at screw clips at the resistor tube.
${ }^{(1)}$ if mounted on an appropriate surface

Electrical and mechanical data

Type series$L \times D$	typical power in W at $40^{\circ} \mathrm{C}$, 100\% DCF	production range Ω-value		dimensions in mm						approx. weight in kg
		from	up to	H	K	M	0	R	U	
FZA 100x35	65	0,22	18k	77	4,5	122	137	66	44	0,5
FZA 135x35	100	0,33	10k	77	4,5	157	172	66	44	0,6
FZA 200x35	150	0,56	6,8k	77	4,5	222	237	66	44	0,7
FZA 330x35	250	1,0	4,7k	77	4,5	352	367	66	44	1,1
FZA 160x45	150	0,47	6,8k	87	5,8	186	206	75	48	0,7
FZA 200x45	180	0,68	5,6k	87	5,8	226	246	75	48	0,8
FZA 300x45	300	1,2	3,9k	87	5,8	326	346	75	48	1,1
FZA 300x65	430	6,8	2,7k	120	6,5	330	346	92	64	1,7
FZA 400x65	600	10	1,8k	120	6,5	430	446	92	64	2,2
FZA 500x65	800	12	1,5k	120	6,5	530	546	92	64	2,7
FZA 600x65	1000	15	1,0k	120	6,5	630	646	92	64	3,3
FZZA 300x65	860	3,9	1,2k	120	6,5	326	346	185	150	3,4
FZZA 400x65	1200	5,6	1,0k	120	6,5	426	446	185	150	4,2
FZZA 500x65	1600	6,8	680	120	6,5	526	546	185	150	5,1
FZZA 600x65	2000	8,2	560	120	6,5	626	646	185	150	6,1
FZDA 300x65	1300	2,7	820	120	6,5	326	346	275	240	5,4
FZDA 400x65	1800	3,3	560	120	6,5	426	446	275	240	6,4
FZDA 500x65	2400	3,9	470	120	6,5	526	546	275	240	7,4
FZDA 600x65	3000	5,6	390	120	6,5	626	646	275	240	8,7

For further details concerning the range of ohmic values with adjustable clips please see pages T109E/110E

Example:
Ordering designation:

Continuous dissipation 600 W , resistance value 25Ω, with adjustable clips FZA 400x65 F - 25

Technologies

- with side-panels, perforated cover and terminals
- version protected against access to hazardous parts
- connections at two-pole porcelain terminal up to 20A
- integration into the switch cabinets

Option: temperature switch (..Q)

- beginning with size $D=45 \mathrm{~mm}$ only!

This type can be equipped with a $180^{\circ} \mathrm{C}$ temperature switch (TS) for temperature monitoring. It is wired on porcelain terminals and monitors an overloading of the resistor by a normally closed contact free of potential (NCC). This signal has to be considered by the customer e.g. by a warning or disconnection of the mains. (Restrictions please look on page T105E)

Warning: There will not be a disconnection of the resistor!
Type designation then: FZ.MQ ...
Contact rating of the signal contact:

- $2 \mathrm{~A} / 24 \operatorname{VDC}(\mathrm{DC} 11)$
- 2 A / 230 VAC (AC11)

You will find suggestions for the dimensioning of the resistor for continuous and short term load at chapter Technical Details, pages T106E and T107E.

Application

An important application is the use as braking resistor for motor/generator drive of motors with frequency converters where small power ratings are required.
Various applications derive from the compact construction form for integration into switch cabinets.

Special design

- Version of low inductance by bifilar winding and therefore of low-noise

C ${ }^{-1}$
Cemented wirewound tubular fixed resistor in one-, two- or three-tube design, degree of protection IP20 if mounted on an appropriate surface, with sidepanels and perforated cover. Fixing parallel to mounting surface, with two connections wired on porcelain terminals
${ }^{(1)}$ if mounted on an appropriate surface
${ }^{(2)}$ terminals protected against access to hazardous parts according to BGV A2
${ }^{(3)}$ optional for $\mathrm{D}=45$ and 65 , type designation then FZ.M.U or FZ.M.QU. (version with device terminals G10/G5)

Electrical and mechanical data

for version FZ.MQ.. dimension O is 25 mm larger
for version FZ.M.U.. dimension O is 35 mm larger

Example:
Order designation:

Continuous dissipation 1200 W, resistance value 56Ω with temperature switch FZZMQ 400x65-56

Type series FZG／FZZG／FZDG

Technologies

－version protected against access to hazardous parts
－connections at terminals up to 20A 2－poles porcelain terminal
－wall mounting or mounting on switch cabinets

Option：temperature switch（．．Q）

This type can be equipped with a $180^{\circ} \mathrm{C}$ temperature switch（TS）（incl．PG9 gland）for temperature monitoring．It is wired on porcelain terminals and monitors an overloading of the resistor by a normally closed contact free of potential（NCC）．This signal has to be considered by the customer e．g．by a warning or disconnection of the mains． （Restrictions please look on page T105E）

Warning：There will not be a disconnection of the resistor！
Type designation then：FZ．GQ ．．．
Contact rating of the signal contact：
－2A／24 VDC（DC11）
－ 2 A／ 230 VAC（AC11）
You will find suggestions for the dimensioning of the resistor for continuous and short term load at chapter Technical Details，pages T106E and T107E．

Application

An important application is the use as braking resistor for motor／generator drive of motors with frequency converters．
Various applications derive from the compact construction form for wall mounting or mounting on a switch cabinet．

Special design

－Version of low inductance by bifilar winding and therefore of low noise
－up to 35 A with 2－poles flat terminals and PG13，5 cable gland （no temperature switch available）

Cemented wirewound tubular fixed resistor in one－up to three－tubes design， degree of protection IP20 if mounted on an appropriate surface，with side－ panels and perforated cover．Fixing parallel to mounting surface．With two connections wired on terminals in attached terminal box with PG11－cable gland．
${ }^{(1)}$ if mounted on an appropriate surface

Electrical and mechanical data

11M0036／11M0418（FZ．GQ）

Example of dimensioning and selection of a specific unit：

Braking resistor for frequency converter drive with temperature switch：
Short time dissipation 12 kW at 15% DCF，total cycle time shorter than 120 s ，
intermediate circuit voltage 650 V ；resistance value 33Ω ，calculating of continuous dissipation： 12 kW ： 5 ＝2，4 kW；choosen：FZDGQ 500x65－33

Type series FZEC/FZZC/FZDC and FZVC/FZFC/FZSC

Technologies

- version protected against access to hazardous parts
- connections at two-poles polyamide terminals G10/2 up to 60A
- wall mounting or mounting on switch cabinets

Option: temperature switch (.Q)

This type can be equipped with a $180^{\circ} \mathrm{C}$ temperature switch (TS) (incl. M12 cable gland) for temperature monitoring. It is wired on device terminals G5 and monitors an overloading of the resistor by a normally closed contact free of potential (NCC). This signal has to be considered by the customer e.g. by a warning or disconnection of the mains.

Warning: There will not be a disconnection of the resistor!
Type designation then: FZ.CQ ...
Contact rating of the signal contact:

- $2 \mathrm{~A} / 24 \mathrm{VDC}(\mathrm{DC} 11)$
- 2 A / 230 VAC (AC11)

You will find suggestions for the dimensioning of the resistor for continuous and short term load at chapter Technical Details, pages T106E and T107E.

Application

An important application is the use as braking resistor for motor/generator drive of motors with frequency converters, where medium ratings are required.
Various applications derive from the compact construction form for wall mounting or mounting on a switch cabinet.

Special design

- version of low inductance by bifilar winding and therefore of low noise
- with cage clamp terminals
$1,5 / 2,5 / 4 \mathrm{~mm}^{2}$
$430-6000 \mathrm{~W}$ with terminal box

Cemented wirewound tubular fixed resistor in one- up to six-tube design, degree of protection IP20 if mounted on an appropriate surface, with sidepanels and perforated cover. Fixing parallel to mounting surface. With two connections wired on terminals in attached terminal box with PG16-cable gland.
${ }^{(1)}$ if mounted on an appropriate surface
${ }^{3}$ optional, type designation then FZ.C.U or. FZ.CQU.

Electrical and mechanical data

Type series FZT／FZZT／FZDT and FZVT／FZFT／FZST

Technologies

－integrated thermal overload relay up to 24 A
－protection against excess temperature
－factory－made adjustment
－connections directly at the overload relay
－version protected against access to hazardous parts
－wall mounting or mounting on switch cabinets

Thermal overload relay

An eventual overload of the resistor is monitored by the thermal overload relay， which is mounted in the attached terminal box．This is accomplished by NCC and NOC contacts．
This warning has to be considered by the customer，e．g．by a warning or disconnection of the mains．More about operation details on page T105E．

Warning：There will not be a disconnection of the resistor！

Connection cross section／screwing：

fine stranded，for relay up to	connection in mm^{2}	
	13 A	24 A
main current	$1 \times 2,5$	2×6
auxiliary current	$1 \times 2,5$	$2 \times 2,5$
cable gland	PG9＋ PG11	$\mathrm{M} 12+$
	PG16	

Contact ratings of the signal contacts：
－2A／24 VDC（DC11）
－ 2 A／ 230 VAC（AC11）

Application

Braking resistor for motor／generator drive of motors with frequency converters．The braking current is monitored．

150－6000 W with thermal overload relay

Cemented wirewound tubular fixed resistor in one－up to six－tube design， degree of protection IP20 if mounted on an appropriate surface．Connections at the integrated thermal overload relay in the attached terminal box with cable gland PG9 and PG11（up to 13 A）or with M12 and PG16．
（＞13 A or for all types in UL－version like（3）
${ }^{(1)}$ if mounted on an appropriate surface
${ }^{\text {（3）}}$ optional for $\mathrm{D}=65$ ，type designation then FZ．TU

Electrical and mechanical data

11M0117（up to 13 A）／11M0039（up to 24 A）

Type series FZEX / FZZX / FZDX and FZVX / FZFX / FZSX

Technologies

- intrinsically safe resistor
- attention: only suitable for DC voltage up to 850 VDC
- integrated FRIZLEN DCPOWERSWITCH up to 25 A
- switch off by overload
- factory adjusted
- connection directly at the FRIZLEN DC-POWERSWITCH
- protected against access to hazardous parts
- wall mounting or mounting on switch cabinets

Intrinsically safe resistor through FRIZLEN DC-POWERSWITCH

These type series with overload switch is able to protect the integrated resistors from constant overload and from too high short time peak power, e.g. caused by a false operational mode or a fault by an short circuited chopper transistor.
This option for protection not only signals the hardware fault, it switches off the object / the resistor absolutely reliable! Possible damage in the environment by overheating and burning are effectively avoided. The actual fault is reported by potential free N/O and N/C contacts. After a successful fault clearance the DC-POWERSWITCH can be switched on like a normal automatic cutout.

Connection cross section/screwing:

fine stranded, up to	connection in mm^{2}
main current	$2,5 \mathrm{~mm}^{2}-10 \mathrm{~mm}^{2}$ (AWG $14-$ AWG 8)
auxiliary current	$1,5 \mathrm{~mm}^{2}$

Contact ratings of the signal contacts:

- 5 A / 24 VDC (DC11)
- 10 A / 230 VAC (AC11)

300-6000 W - intrinsically safe

Cemented wirewound tubular fixed intrinsically safe resistor in one- up to sixtube design, degree of protection IP20 if mounted on an appropriate surface. Connections at the integrated FRIZLEN DC-POWERSWITCH ${ }^{(4)}$ in the attached terminal box with cable gland PG9 and PG11 (up to 16 A) or with M12 and PG16-cable gland (>16 A). Switch off by overload.
(1) if mounted on an appropriate surface
${ }^{(3)}$ optional, type designation then FZ.XU... - in progress
(4) German patented design no. DGBM 202009015851.9

Electrical and mechanical data

Type series	typical power in W at $40^{\circ} \mathrm{C}$, 100\% DCF	production range Ω-value		dimension in mm					approx. weight inkg
FZEX 200x65	300	4,7	3,9k	120	230	405	92	80	2,4
FZEX 300x65	430	6,8	2,7k	120	330	505	92	80	2,7
FZEX 400x65	600	10	1,8k	120	430	605	92	80	3,2
FZEX 500x65	800	12	1,5k	120	530	705	92	80	3,7
FZEX 600x65	1000	15	1,0k	120	630	805	92	80	4,4
FZZX 300x65	860	3,9	1,2k	120	326	505	185	150	4,4
FZZX 400x65	1200	5,6	1,0k	120	426	605	185	150	5,2
FZZX 500x65	1600	6,8	680	120	526	705	185	150	6,1
FZZX 600x65	2000	8,2	560	120	626	805	185	150	7,1
FZDX 300x65	1300	2,7	820	120	326	505	275	240	6,4
FZDX 400x65	1800	3,3	560	120	426	605	275	240	7,4
FZDX 500x65	2400	3,9	470	120	526	705	275	240	8,4
FZDX 600x65	3000	5,6	390	120	626	805	275	240	9,7
FZVX 400x65	2400	3,9	470	210	426	605	185	150	9,5
FZVX 500x65	3200	5,6	330	210	526	705	185	150	11,3
FZVX 600x65	4000	6,8	270	210	626	805	185	150	13,3
FZFX 400x65	3000	5,6	390	210	426	605	266	240	11,9
FZFX 500x65	4000	6,8	270	210	526	705	266	240	13,9
FZFX 600x65	5000	8,2	180	210	626	805	266	240	16,4
FZSX 400x65	3600	6,8	330	210	426	605	266	240	13,9
FZSX 500x65	4800	8,2	220	210	526	705	266	240	15,9
FZSX 600x65	6000	10	180	210	626	805	266	240	18,9

t 200 - DIE flexiblen / theflexible ONES

Zementierte Drahtdrehwiderstände 16 bis 1500 Watt

Zementierte Drahtdrehwiderstände in Grundausführung als Einzelelemente.

■ Mit angebauten Mikroschaltern, mit Skalenscheiben und Drehknopf
■ In Reihenanordnung, mehrphasig oder parallel geschaltet
■ Eingebaut in Gehäuse oder als staubgekapselte Ausführung
$■$ Mit Motorantrieb, für Gleich- oder Wechselspannung, für verschiedene Spannungen und Durchlaufzeiten, mit Mikroschaltern, auch 10-Gang-Ausführung

Cement coated wirewound potentiometers

16 up to 1500 Watt

Cement coated wirewound potentiometers as individual components.
\square With additional micro switches, with scale discs and adjusting knobs
■ In in-line configuration, for multiple phases or switched in parallel
■ Integrated in enclosure or dustproof encapsulated
\square Motor driven, for different AC and DC operating voltages and operating times, with micro switches, also with precision ten turn potentiometer

Contents

Properties

Applications

This list comprises cement coated wirewound variable resistors (potentiometers) as single devices in cemented version, that can be integrated in other units and composed to potentiometer units in different degrees of protections and mounting types. According to request these resistors are also manufactured with motor drive for $A C$ and DC voltage.

maximum power	characteristics	type series	page
	survey		T221E
	technical details		T222E
160 W	variable resistors, suitable for integration	R 10-R 80	T223E
1,0 kW	variable resistors, suitable for integration	R100-R500	T224E
0,5 kW	enclosures, special designs, accessories	D, K, RK, RG...	T225E
1,5 kW	variable resistors with AC motor drive	RM..	T226E
1,5 kW	variable resistors with DC motor drive	RMC..	T227E
2 W	10 turn precision potentiometer with	RM 2Z../RMC 2 Z .	T228E

- Iow temperature coefficient
\Rightarrow constant ohmic value at a large temperature range
- fixation of wire by cementation
\Rightarrow good heat conducting properties
- stepless variable resistance value
\Rightarrow change and/or adjustment or trimming by the user
- various diameters and installation depths
\Rightarrow can be integrated, compact construction
- with motor drive for various voltages and operating times
\Rightarrow remote control available
- various accessories
\Rightarrow like scale discs, adjusting knobs, micro switches
- \quad stepless variable adjustment for AC and DC motors
- field rheostats for generators
- resistors for current and voltage limitation
- \quad starting resistor for DC voltage motors
- motorised potentiometers as nominal value setter
- integration in power supply units, power packs, switch cabinets and machines
- adjustable load resistors
- resistors for experimenting and testing in laboratories, schools and universities

T 200 - Survey

		$\begin{aligned} & \text { R10 } \\ & \text { R20 } \end{aligned}$	$\begin{aligned} & \text { R40 } \\ & \text { R80 } \end{aligned}$	$\begin{aligned} & \hline \text { R100 } \\ & \text { R150 } \end{aligned}$	$\begin{aligned} & \hline \text { R250 } \\ & \text { R500 } \end{aligned}$	RG	RK	RM	RMC	RM2Z	RMC2Z
	$\begin{aligned} & \text { page } \\ & \text { symbol } \end{aligned}$	T223E	T223E	T224E	T224E	T225E	T225E	T226E	T227E	T228E	T228E
typical power from [W]		16	50	120	300	8	8	16	16	2	2
typical power up to [W]		60	160	360	1000	250	25	1500	1500	2	2
dustproof							X				
micro switch available		X	X	X	X			X	X	X	X
degree of protection IP00	$\begin{gathered} \text { IP } \\ 00 \\ \text { IP } \\ 20 \end{gathered}$	X	X	X	X			X	X	X	X
degree of protection IP20						X					
integration	E	X	X	X	X		X	X	X	X	X
AC - motor drive	Mot. AC Mot. DC							X		X	
DC - motor drive									X		X
enclosure/ laboratory version						X					

Technical

 details
Construction

Continuous power rating

Air and creepage distances

Storage temperature/ Operation temperature/ Installation altitude

How to order

This list comprises cement coated wirewound variable resistors (potentiometer) with continuous dissipation from 16 W up to 500 W .

The ring-shaped bodies are made from steatite. The wires and bands with a low temperature coefficient, which are used for the resistance winding, are made from CuNi 44 according to DIN 17471,46460 and 46461 (formerly WM 50) for low and medium ohmic values or from CrNi 6015 according to DIN 17742 and 46463 (formerly WM 110) for high ohmic values. They are wound on distance and fixed and protected by a layer or a special cement which also improves the heat dissipation. The wire windings with rated continuous dissipation of resistors from 16 W to 500 W are produced according to DIN 41 473, 41475 and 41476.

All resistors are manufactured with 3 connections and isolated shaft and can be used as voltage divider and as series resistance. The standard types of sizes R $10, R 20$, R 40 und R 80 are equipped with fast-on terminals $4,8 \times 0,8$; all the others with screw connections. The contacts are usually made of silver. A coppered carbon contact can be used for high ohmic values and frequent operations.

The listed typical power values are valid during permanent operation and at a maximum ambient temperature of $40^{\circ} \mathrm{C}$. They are valid under the condition that cooling air may enter incessantly and that the potentiometers are fixed onto metallic surfaces. If the resistors are fixed onto non-metallic surfaces, the power rates should be lowered to about 70% of the listed values. If the ambient temperature is essentially higher than $40^{\circ} \mathrm{C}$, the typical power has to be reduced by 5% for any temperature rise of 10 K .

In addition to the mentioned maximum and minimum ohmic values other values can be achieved if required.

Air and creepage distances are rated according to IEC 664 (DIN EN 0110 part 1) for the overvoltage category III and degree of pollution 3 for grounded three-phase mains supplies up to $3 \times 500 \mathrm{~V}$. Testing voltage 2.5 kV AC.
The test voltage between shaft and the connections (50 Hz AC voltage) is 1000 V for the ten turn precision potentiometer, 2000 V for R 10 and $\mathrm{R} 20,2500 \mathrm{~V}$ for all other sizes.

Do not conclude from the calculated relation between the rated power and the maximum producible ohmic value to the rated voltage!

Storage temperature: $-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Operation temperature: $-30^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. If the ambient temperature is higher than $40^{\circ} \mathrm{C}$, you have to decrease the continuous dissipation by 4% per 10 K temperature rise!
Installation altitude: $\quad 2000 \mathrm{~m}$ above sea level, you have to decrease the continuous dissipation for 10% per 1000 m altitude, maximum altitude 5000 m above sea level

Restrictions are for the type series RM.. because of the technical build-in devices. Operation temperature: $-20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$

When ordering resistors, following details should possibly be mentioned: size of resistor, ohmic value (serie E 12 preferably), tolerance of resistance, desired accessories like knob, switches or scale disc, special types, application, power length of shaft.

If there are no given details for a resistor, we feel free to furnish according to our own ideas.

Type series R10 / R20
R40 / R80

Cement coated wirewound variable resistors

IP	
00	E

size	R10	R20	R40	R80
production range in ohm $\pm 10 \%$	$1,5-$ 10 k	$2,2-$ 15 k	$3,9-$ 27 k	$1-$ 33 k
typical power in W at $40^{\circ} \mathrm{C}$ ambient temperature	16	30	50	80
connections, fast-on (solderable) or on request screw connections M3 in special design(only R40,R80)	$4,8 \times 0,8$			
rotation angle, start to stop	290°	290°	300°	293°
rotation angle over winding	272°	275°	285°	278°
line of resistance	linear			
slider	car contact $260^{\circ} \mathrm{C}$			
excess temperature by nominal power	2	2	2,5	2,5
test voltage in $\mathrm{kV}, 50 \mathrm{~Hz}$	50	80	150	200
weight approx. g				

basic construction standard shaft length measured from mounting plate is 35 mm	dim.	R10	R20	R40	R80
	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \\ & \text { E } \end{aligned}$	$\begin{aligned} & 34 \\ & 28 \\ & 40 \end{aligned}$	$\begin{aligned} & 42 \\ & 30 \\ & 48 \end{aligned}$	$\begin{aligned} & 54 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 68 \\ & 50 \\ & 75 \\ & 30 \\ & \text { M4 } \end{aligned}$

with attached micro switch with solder connections change over contact $250 \mathrm{~V} \sim, 4 \mathrm{~A}$ (in special design fast-on connectors 6,3×0,8)	dim.	R10	R20	R40	R80
	$\begin{gathered} \text { A } \\ \text { B1 } \\ \text { B2 } \\ \text { C } \\ \text { D } \end{gathered}$	$\begin{aligned} & 60 \\ & 55 \\ & 66 \\ & 40 \\ & 17 \end{aligned}$	$\begin{aligned} & 64 \\ & 55 \\ & 66 \\ & 48 \\ & 21 \end{aligned}$	$\begin{aligned} & 70 \\ & 66 \\ & 77 \\ & 60 \\ & 27 \end{aligned}$	$\begin{aligned} & 75 \\ & 73 \\ & 84 \\ & 80 \\ & 34 \end{aligned}$

in 2fold in-line configuration (on request also in 3, 4 or 5fold in-line configuration available)	dim.	R10	R20	R40	R80
RZ.. configuration of equal resistors on 1 shaft example: 2 equal resistors (each R20), with equal ohmic values (each 1 k): type: RZ20-2x1k 12M-0802-00-001	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 34 \\ & 66 \\ & 40 \end{aligned}$	$\begin{aligned} & 42 \\ & 71 \\ & 48 \end{aligned}$	$\begin{aligned} & 54 \\ & 91 \\ & 60 \end{aligned}$	$\begin{gathered} 68 \\ 119 \\ 80 \end{gathered}$

Type series R100 / R150
R250 / R500

Cement coated wirewound variable resistors

IP	
00	E

size	R100	R150	R250	R500
production range in ohm $\pm 10 \%$	$1,2-$ 39 k	$1,5-$ 47 k	$1,8-$ 47 k	$3,3-$ 10 k
typical power in W at $40^{\circ} \mathrm{C}$ ambient temperature	120	180	300	500
screw connections	M 4	M 4	M 4	M 5
rotation angle, start to stop	300°			
rotation angle, over winding	286°	286°	291°	290°
line of resistance	linear			
slider	contact			

basic construction standard shaft length measured from mounting plate is 45 mm		dim.	R100	R150	R250	R500
available special shaft lengths: 25, 33 mm shaft length fitting to switches D57 and D70: 25 mm		$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{gathered} 86 \\ 62 \\ 98 \\ 36 \\ \text { M } 4 \end{gathered}$	$\begin{gathered} 86 \\ 82 \\ 98 \\ 36 \\ \text { M } 4 \end{gathered}$	$\begin{gathered} 142 \\ 80 \\ 153 \\ 60 \\ \text { M } 4 \end{gathered}$	$\begin{gathered} 198 \\ 98 \\ 210 \\ 80 \\ \text { M } 5 \end{gathered}$

with attached micro switch with solder connections change over contact $250 \mathrm{~V} \sim, 4 \mathrm{~A}$ (in special design fast-on connectors 6,3x0,8)	dim.	R100	R150	R250	R500
	$\begin{gathered} \text { A } \\ \text { B1 } \\ \text { B2 } \\ \text { C } \end{gathered}$	$\begin{gathered} 86 \\ 85 \\ 96 \\ 108 \end{gathered}$	$\begin{gathered} 86 \\ 106 \\ 117 \\ 108 \end{gathered}$	$\begin{gathered} 142 \\ 94 \\ 105 \\ 168 \end{gathered}$	$\begin{aligned} & 198 \\ & 118 \\ & 129 \\ & 225 \end{aligned}$

in 2fold in-line configuration (on request also in 3, 4 or 5fold in-line configuration available)		dim.	R100	R150	R250	R500
		$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	$\begin{gathered} 86 \\ 132 \\ 108 \end{gathered}$	$\begin{gathered} 86 \\ 172 \\ 108 \end{gathered}$	$\begin{aligned} & 142 \\ & 166 \\ & 168 \end{aligned}$	$\begin{aligned} & 198 \\ & 215 \\ & 225 \end{aligned}$

To type series R10 - R500
Enclosure, special designs, accessories

IP
20
:---:
00

knob and scale disc for variable resistors			$\begin{aligned} & \text { R10 } \\ & \text { R20 } \end{aligned}$	$\begin{aligned} & \text { R40 } \\ & \text { R80 } \end{aligned}$	$\begin{aligned} & \text { R100 } \\ & \text { R150 } \end{aligned}$	$\begin{aligned} & \text { R250 } \\ & \text { R500 } \end{aligned}$
knob - type D	scale disc - type K	type D	30	41	57	70
		$\begin{gathered} \varnothing \mathrm{A} \\ \mathrm{~B} \\ \varnothing \mathrm{C} \\ \mathrm{G} \\ \mathrm{H} \end{gathered}$	$\begin{gathered} 31 \\ 22 \\ 6 \\ 16 \\ 9 \end{gathered}$	$\begin{gathered} 41 \\ 26 \\ 6 \\ 19 \\ 13 \end{gathered}$	$\begin{gathered} 57 \\ 30 \\ 8 \\ 27 \\ 12 \end{gathered}$	$\begin{gathered} 70 \\ 43 \\ 8 \\ 27 \\ 11 \end{gathered}$
		type K	28	38	55	68
		\varnothing E	10,5	10,5	8,5	8,5
		\varnothing F	48	65	80	100
		\varnothing L	-	-	4,5	4,5
			-	-	36	44/60

type series RG...	dim.	$\begin{aligned} & \hline \text { RG10 } \\ & \text { RG20 } \\ & \text { RG40 } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { RG80 } \\ \text { RG100 } \\ \text { RG150 } \\ \hline \end{gathered}$	RG250	RG500
variable resistor, integrated in enclosure, with adjusting knob and scale disc, degree of protection IP 20, connections at the resistor maximal load 0,5 x typical power	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \\ & 70 \\ & 88 \end{aligned}$	$\begin{aligned} & 120 \\ & 100 \\ & 100 \\ & 132 \end{aligned}$	$\begin{aligned} & 175 \\ & 100 \\ & 150 \\ & 132 \end{aligned}$	$\begin{aligned} & 240 \\ & 110 \\ & 215 \\ & 155 \end{aligned}$

```
special designs and accessories
- zero position
- locking device (only R10, R20, R40, R80, R100, R150)
- screw driver slot (only R10, R20, R40, R80)
- different shaft length
- centre tap
- reduced tolerance
- sector winding (all sizes besides R10)
- in laboratory version, please look at our list T400E
```

FFIZ1
LEN

Type series RM...

Technologies

- mounted on a base plate
- for 230 V AC, 50 Hz
- with safety clutch
- various operating times

The motor version of these variable resistors can be manufactured in a one-, two- or three-fold construction. In the standard version each resistor has the same ohmic value, however different ohmic values can also be combined. For the increase of the rated power and/or the current the variable resistors can also be switched in parallel.

Up to 3 further freely adjustable limit switches are optionally available. Thus further control functions can be realized by the customer.

Example of a wiring diagram:

Illustr.: standard wiring diagram of type RM.., with 2 limit switches

Special designs

- combination of different typical powers (potentiometer)
- multiple in-line configuration (max. 4 to 5-fold)
- further operating times

Variable resistors with AC-motor drive

Variable resistor driven by a single phase synchronous motor $230 \mathrm{~V}, 50 \mathrm{~Hz}$, mounted on a base plate, with adjustable safety clutch between motor and resistor, with 2 limit switches, motor terminals wired on terminals, operating times: 8/12/16/24/47/90s.

Electrical and mechanical data

type	production range Ω - value		dimension in mm						approx. weight. in kg
	from	up to	A	B	C	\varnothing D	E	F	
RM 10	1,5	10k	75	155	92	4,5	60	140	0,8
RM 20	2,2	15k	75	155	92	4,5	60	140	0,8
RM 40	3,9	27k	75	155	97	4,5	60	140	0,9
RM 80	1,0	33k	110	220	98	4,5	95	205	1,1
RM 100	1,2	39k	110	220	110	4,5	95	205	1,4
RM 150	1,5	47k	110	240	110	4,5	95	225	1,5
RM 250	1,8	47k	160	225	165	5,5	140	205	2,4
RM 500	3,3	10k	220	250	220	5,5	200	230	4,3
RZM 10	1,5	10k	110	220	92	4,5	95	205	1,0
RZM 20	2,2	15k	110	220	92	4,5	95	205	1,1
RZM 40	3,9	27k	110	220	97	4,5	95	205	1,2
RZM 80	1,0	33k	110	240	98	4,5	95	225	1,4
RZM 100	1,2	39k	110	290	110	4,5	95	275	2,0
RZM 150	1,5	47k	160	335	110	4,5	140	315	2,7
RZM 250	1,8	47k	160	335	165	5,5	140	315	3,7
RZM 500	3,3	10k	220	420	220	5,5	200	400	7,8
RDM 10	1,5	10k	110	290	92	4,5	95	275	1,1
RDM 20	2,2	15k	110	290	92	4,5	95	275	1,2
RDM 40	3,9	27k	110	290	97	4,5	95	275	1,4
RDM 80	1,0	33k	110	350	98	4,5	95	335	1,8
RDM 100	1,2	39k	110	350	110	4,5	95	335	2,6
RDM 150	1,5	47k	160	440	110	4,5	140	420	3,6
RDM 250	1,8	47k	160	440	165	5,5	140	420	5,1
RDM 500	3,3	10k	220	570	220	5,5	200	550	11,1

Type series RMC...
Variable resistors with DC-motor drive

Technologies

- mounted on a base plate
- for ± 24 V DC
- with safety clutch
- various operating times

The motor version of these variable resistors can be manufactured in in a two or three-fold construction. In the standard version each resistor has the same ohmic value, however different ohmic values can also be combined. For the increase of the rated voltage and/or the current the variable resistors can also be switched in parallel.

Up to 3 further freely adjustable limit switches are optionally
available. Thus further control functions can be realized by the customer.

Example of a wiring diagram:

Illustr.: standard wiring diagram of type RZMC.., with 2 additional limit switches and voltage divider

Special designs

- combination of different typical powers (potentiometer)
- multiple in-line configuration (max. 4 to 5-fold)
- further operating times
- adjustable operating time with additional voltage divider resistor
- different mains voltages
- reversing relay type RMCW .. (for pole switching)

Variable resistor driven by a DC current motor 24 V , mounted on a base plate, with adjustable safety clutch between motor and resistor, with 2 limit switches, motor connections on terminals, operating times: 8/24/47/90s

Electrical and mechanical data

type	production range Ω - value		dimension in mm						approx. weight kg
	from	up to	A	B	C	\varnothing D	E	F	
RMC 10	1,5	10k	110	220	92	4,5	95	205	0,7
RMC 20	2,2	15k	110	220	92	4,5	95	205	0,7
RMC 40	3,9	27k	110	220	97	4,5	95	205	0,8
RMC 80	1,0	33k	110	220	98	4,5	95	205	1,1
RMC 100	1,2	39k	110	220	110	4,5	95	205	1,3
RMC 150	1,5	47k	110	240	110	4,5	95	225	1,5
RMC 250	1,8	47k	160	225	165	5,5	140	205	2,2
RMC 500	3,3	10k	220	250	220	5,5	200	230	4,2
RZMC 10	1,5	10k	110	220	92	4,5	95	205	0,9
RZMC 20	2,2	15k	110	220	92	4,5	95	205	1,0
RZMC 40	3,9	27k	110	240	97	4,5	95	225	1,1
RZMC 80	1,0	33k	110	240	98	4,5	95	225	1,4
RZMC 100	1,2	39k	110	290	110	4,5	95	275	1,9
RZMC 150	1,5	47k	110	350	110	4,5	95	335	2,6
RZMC 250	1,8	47k	160	335	165	5,5	140	315	3,6
RZMC 500	3,3	10k	220	420	220	5,5	200	400	7,7
RDMC 10	1,5	10k	110	290	92	4,5	95	275	1,1
RDMC 20	2,2	15k	110	290	92	4,5	95	275	1,2
RDMC 40	3,9	27k	110	290	97	4,5	95	275	1,4
RDMC 80	1,0	33k	110	350	98	4,5	95	335	1,8
RDMC 100	1,2	39k	110	350	110	4,5	95	335	2,6
RDMC 150	1,5	47k	160	440	110	4,5	140	420	3,6
RDMC 250	1,8	47k	160	440	165	5,5	140	420	5,1
RDMC 500	3,3	10k	220	570	220	5,5	200	550	11,1

[^0]Type series RM $2 Z$ / RMC $2 Z$

RMC $2 Z$
(with additional voltage divider and switch)

Technologies

- ten turn precision potentiometer
- mounted on a base plate
- for $\pm 24 \mathrm{~V}$ DC or $230 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}$
- with safety clutch
- various operation times
- typical power 2 W

The motor version of these variable resistors can be manufactured according to the necessary operating voltage for $A C$ or DC version.

Up to 3 further freely adjustable limit switches are optionally available. Thus further control functions can be realized by the customer.

Example of a wiring diagram:

Illustr.: wiring diagram of type RMC $2 Z$.., with 1 additional limit switch

Special designs

- further operating times
- adjustable operating time (only RMC 2Z) with additional voltage divider resistor
- different mains voltages
- with reversing relay type RMCW $2 Z$ (for pole switching)
- further potentiometer
- typical power 3 W

Variable resistors with motor drive ten turn precision potentiometer

| IP
 00 | E | Mot.
 AC | Mot.
 DC |
| :--- | :--- | :--- | :--- | :--- |

RM $2 Z$ Variable resistor driven by a single phase-synchronous motor 230 V , 50 Hz , operating times: 8/12/16/24/47/90s
RMC 2Z: Variable resistor driven by a DC motor 24 V , operating times: 8/24/47/90s
Both mounted on a base plate, with adjustable safety clutch between motor and resistor, with 2 limit switches, motor connections on terminals.

Electrical and mechanical data

type	possible Ω-values	approx. weight in kg
RM $2 Z$	$100 / 200 / 500 / 1 \mathrm{k} / 5 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k}$	1,0
RMC 2 Z	$100 / 200 / 500 / 1 \mathrm{k} / 5 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k}$	1,1

RM $2 Z$

RMC $2 Z$

[^1]

T 300 - DIE INNOVATIVEN / THE INNOVATIVE ONES

Drahtgewickelte Flachwiderstände

 5 bis 40000 WattDrahtgewickelte Flachwiderstände als Einzelelemente, die einbaufähig sind und im Aluminiumgehäuse gekapselte Festwiderstände in verschiedenen Schutz- und Befestigungsarten.

■ Anschluss an Litzen oder Lötpins, bei Einbau im Gehäuse auch an Klemmen

■ Einzelwiderstände zu Baugruppen kombiniert für spezielle Einbaulösungen in Schutzart IPOO
■ Für waagerechte oder senkrechte Befestigung im Aluminiumgehäuse bis Schutzart IP67, auch in Mehrfachanordnung
\square Für größere Leistungen in wassergekühlter Ausführung bei Schutzarten bis IP54

Wirewound flat resistors

5 up to 40000 Watt

Wirewound flat resistors as individual components in an open design that can be integrated into other units and composed to incapsulated flat resistor units in different degrees of protection and mounting types.

■ With wires or soldering lugs, if enclosed connection to wires or terminals

■ In degree of protection IPOO single elements can be combined to units for special requirements
■ Up to degree of protection IP67 for horizontal and vertical mounting, also in multiple configuration

- Watercooled for higher continuous dissipation up to degree of protection IP54

Contents

Proporties

7

Applications

This list comprises our wirewound flat resistors as individual components in an open design in type series GU and GZ, which can be integrated into other units and encapsulated flat resistor composed to different protection degrees and mounting solutions, further fixed resistors in multiple configurations and also water cooled.

maximum power	characteristics, protection degree	units in maximum voltage	type series	page
	survey			T302E
	technical details			T304E
300 W	IP00, wires/lugs	848 VDC	GU./GZ.	T310E
960 W	IP40	800 VDC	GXTD.	T311E
165 W	IP40	800 VDC	GL./GM.	T312E
500 W	IP40	848 VDC	GL. /GM. /GN. /G	T313E
300 W	IP40	1100 VDC	GXAD./GXMD.	T314E
450 W	IP40	1100 VDC	GXAD./GXMD.	T315E
500 W	IP54	848 VDC	GH. /GV. /GA. /G	T316E
750 W	IP54 and IP67	848 VDC	GWAD. /GYAD.	T317E
500 W	IP54	848 VDC	GWAE.	T318E
1575 W	IP54 and IP67	848 VDC	KWAD. /KYAD.	T319E
1050 W	IP54	848 VDC	KWAE.	T320E
500 W	IP54	1100 VDC	GAMD./GBMD.	T321E
750 W	IP54 and IP67	1100 VDC	GWMD./GYMD.	T322E
1575 W	IP54 and IP67	1100 VDC	KWMD./KYMD.	T323E
500 W	IP54 and IP67	1400 VDC	GAND./GBND.	T324E
200 W	IP54	4200 VDC	GAPD./GBPD.	T325E
	type series in multipl	configuration		
750 W	IP20, with terminals	848 VDC	GXHM./GXUM.	T340E
2520 W	IP54 and IP65	848 VDC	FDWZ./FYWZ.	T341E
4800 W	IP54 and IP65	848 VDC	FDAZ.IFYAZ.	T342E
40000 W	IP54, water cooled	848 VDC	WPAZQ.	T343E
Mounting kits for type series GX../GW../GY../KW../KY..			T350E - T353E	
Application example			T360E - T361E	

- short-circuit proof and self-extinguishing (all type series except for GU / GZ)
\Rightarrow therefore big operating safety
- form- or force-locking fixation
\Rightarrow overload resistant at short time load
- flat construction form, various lengths and widths
\Rightarrow can be integrated (nearly any length and width possible within max. dimensions), various possibilities for connection and mounting (type series GU / GZ)
- enclosure from aluminium cast material, protection degree up to IP 67
\Rightarrow various types of protection and mounting (all type series except GU/GZ and GKTD)
- heat sink mounting possible
\Rightarrow higher continuous dissipation, more specific heat dissipation (except GU/GZ)
- UL-Recognition for the American and Canadian market (E212934)
\Rightarrow on request for the signed type series, pls. look on page T305
- braking resistors for frequency converters and DC drives
- load resistors for supply units, power packs, batteries, UPS units and generators
- current limiting resistors for loading and disloading of capacitors
- protective resistors

T 300 - survey - single resistors up to 1100 V DC

		$\begin{gathered} \hline \mathrm{GU} \\ + \\ \mathrm{GZ} \end{gathered}$	GXTD	$\begin{gathered} \hline \text { GLAD } \\ + \\ \text { GMAD } \end{gathered}$	$\begin{aligned} & \hline \text { GLAD } \\ & \text { GMAD } \\ & \text { GNAD } \\ & \text { GPAD } \end{aligned}$	$\begin{aligned} & \text { GXAD } \\ & \text { GXMD } \end{aligned}$	GHAD GVAD GAAD GBAD	GWAD GYAD	GWAE	$\begin{gathered} \hline \text { KWAD } \\ + \\ \text { KYAD } \end{gathered}$	KWAE
characteristics	page symbol	T310E	T311E	T312E	T313E	$\begin{gathered} \hline \text { T314E } \\ + \\ \text { T315E } \end{gathered}$	T316E	T317E	T318E	T319E	T320E
typical power from [W]		5	30	40	50	100	50	100	100	150	150
typical power up to [W]		300	960	165	500	450	500	750	500	1575	1050
degree of protection IP00	$\begin{gathered} \text { IP } \\ 00 \\ \text { IP } \\ 40 \\ \text { IP } \\ 54 \end{gathered}$	X									
degree of protection IP40			X	X	X	X					
degree of protection IP54							X	X	X	X	X
degree of protection IP67								X		X	
horizontal mounting			X	X	X	X	X	X	X	X	X
vertical mounting			X	X	X	X	X	X	X	X	X
can be integrated	E	X	X	X	X	X	X	X	X	X	X
temperature switch (optional)	$-{ }^{9}$				X	X	X	X		X	
max. voltage 800 VDC	$\begin{gathered} 800 \mathrm{~V} \\ \mathrm{DC} \end{gathered}$		X	X							
max. voltage 848 VDC	$\begin{gathered} 848 \mathrm{~V} \\ \mathrm{DC} \end{gathered}$	X			X	X	X	X	X	X	X
max. voltage 1100 VDC	$\begin{gathered} 1100 \mathrm{~V} \\ \mathrm{DC} \end{gathered}$					X					
max. voltage 1400 VDC	$\begin{gathered} 1400 \mathrm{~V} \\ \mathrm{DC} \end{gathered}$										
max. voltage 4200 VDC	$\begin{gathered} 4200 \mathrm{~V} \\ \mathrm{DC} \end{gathered}$										
with US Recognition		X		X	X	X	X	X	X		X
with Recognition						X					

Rights for improvements and modifications of our products reserved. Modifications, errors and misprints justify no claim for damages.

We refer to our terms of sales and delivery.

T 300 - survey - single resistors up to 4,2 kV DC and in multiple configurations

		$\begin{gathered} \text { GAMD } \\ + \\ \text { GBMD } \end{gathered}$	$\begin{gathered} \text { GWMD } \\ + \\ \text { GYMD } \end{gathered}$	$\begin{gathered} \hline \text { KWMD } \\ + \\ \text { KYMD } \end{gathered}$	$\begin{gathered} \text { GAND } \\ + \\ \text { GBND } \end{gathered}$	$\begin{gathered} \text { GAPD } \\ + \\ \text { GBPD } \end{gathered}$	$\begin{gathered} \text { GXHM } \\ + \\ \text { GXUM } \end{gathered}$	$\begin{gathered} \hline \text { FDWZ } \\ + \\ \text { FYWZ } \end{gathered}$	$\begin{gathered} \text { FDAZ } \\ + \\ \text { FYAZ } \end{gathered}$	WPAZQ
		T321E	T322E	T323E	T324E	T325E	T340E	T341E	T342E	T343E
typical power from [W]		110	100	150	110	200	100	225	160	10k
typical power up to [W]		500	750	1575	500	300	750	2520	4800	40k
degree of protection IP40	$\begin{aligned} & \hline \mathrm{IP} \\ & 40 \\ & \mathrm{IP} \\ & 54 \\ & \mathrm{IP} \\ & 65 \end{aligned}$						X			
degree of protection IP54		X	X	X	X	X		X	X	X
degree of protection IP65								X	X	
degree of protection IP67			X	X						
horizontal mounting		X	X	X	X	X	X	X	X	X
vertical mounting		X	X	X	X	X	X	X	X	X
can be integrated	E	X	X	X	X	X	X			X
temperature switch (optional)	$\begin{aligned} & -9 / 5 \\ & 800 \mathrm{~V} \\ & \text { DC } \end{aligned}$	X	X	X	X		X	X	X	X
max. voltage 800 VDC										
max. voltage 848 VDC	848V DC						X	X	X	X
max. voltage 1100 VDC	$\begin{gathered} 1100 \mathrm{~V} \\ \mathrm{DC} \end{gathered}$	X	X	X						
max. voltage 1400 VDC	$\begin{gathered} 1400 \mathrm{~V} \\ \mathrm{DC} \end{gathered}$				X					
max. voltage 4200 VDC	$\begin{gathered} 4200 \mathrm{~V} \\ \mathrm{DC} \end{gathered}$					X				
with US Recognition							X			
with Recognition		X	X	X	X					

Rights for improvements and modifications of our products reserved. Modifications, errors and misprints justify no claim for damages.

We refer to our terms of sales and delivery.

E

Technical details

Construction

Resistance values/
Production tolerance/ Temperature dependency

Wirewound flat resistors consist of support straps and wiring. As standard version the support strap is made of mica. For resistor windings we use round wires consist of alloy CuNi 44 according to DIN 17471, 46460-1 and 46461 or of NiCr 3020 or CrAl 255 according to DIN 17470. We either wind an oxidized wire without gap (type GU) or fix them by non-slip strip cementing (type GZ), even if they lengthen a little when heated.
We surround the resistor installations of our encapsulated flat resistors with quartz sand. Then the wire will not slip and the heat transfer to the aluminium enclosure is reliable.

The resistance values in the column "production range" refer to the standard production program, further values on request. The normal tolerance is $\pm 10 \%$, restricted tolerance on request.
The resistance value slightly changes in dependency of the winding temperature. The temperature rise at the winding is $\Delta \mathrm{T} \approx 300 \mathrm{~K}$ when the rated power is operating continuously. Compared to the cooled off condition you have the following changes of resistance value: with wires made of CuNi 44 approx. $\pm 1 \%$, of CrAl 255 approx. $+1 \%$ and of NiCr 3020 approx. $+10 \%$.

Correlation of type series and degrees of protection according to EN 60529 and/or DIN VDE 0470 part 1.

Type series	Degree of protection	First digit: Degree of protection against access \& against solid foreign objects	Second digit: Degree of protection against water
$\begin{array}{\|l\|l} \mathrm{GU} \\ \mathrm{GZ} \end{array}$	IP 00	Non-protected - i.e. depending upon integration the user must provide a protection	Non-protected
GLAD GMAD GNAD GPAD GX..	IP 40	Protected against access to hazardous parts with a wire and against solid foreign objects of 1 mm \varnothing and greater.	Non-protected
GA.. GB.. GHAD GVAD GW.. KW..	IP 54	Protected against access to hazardous parts with a wire and against dust	Protected against splashing water. Water splashed against the enclosure from any direction shall have no harmful effects
$\begin{aligned} & \text { GY.. } \\ & \text { KY.. } \end{aligned}$	IP 67	Protected against access to hazardous parts with a wire and dusttight	Protected against the effects of temporary immersion in water. Ingress of water in quantities causing harmful effects shall not be possible when the enclosure is temporarily immersed in water under standardized conditions of pressure and time

CE Devices with degrees of protection IP 20 or higher comply with the CE low voltage directive. Power resistors being passive electronical or electrical units are not affected by the specific EMC standards. They do not produce any interfering radiation nor are they affected.

Time constant

Wiring / Connections

The average thermal time constant is 360 sec . under the condition of free mounting and cooling.

All our encapsulated resistors in standard version have UL recognized FEP/PTFEwires, that are partially also wired on terminals.
(Special wire insulations on request). If the wiring is accomplished by the customer, make sure that a heat resistant wire is used!

Air- and creepage
distances/
UL-Recognition

Excess temperature protection

Contact ratings

Storage temperature/ Operation temperature/ Installation altitude

All standard type series can be delivered in a version with UL-Recognition and are rated for the overvoltage category III, the air and creepage distances are rated according to IEC 664 (DIN VDE 0110 part 1). For protection degree IP40 the resistors are rated for pollution level 2, versions with protection degree IP 54 and higher are for pollution level 3.

These data are valid for all devices that are connected with mains voltage and derived voltages, as for example the intermediate circuit voltage of frequency converters.

The type of authorisation and the underlained three-phase main voltage are given in the survey.

Type of authorisation (E212934)	Authorisation up to	Grounded threephase mains up to	Grounded and ungrounded threephase mains up to	Testing voltage
$\begin{gathered} \text { C. US } \\ \text { (CSA C22.2 No.14) } \end{gathered}$	800 VDC	$3 \times 277 / 400$ VAC	3×277 VAC	4,2 kV DC
	848 VDC	$3 \times 347 / 600$ VAC	3×600 VAC	4,2 kV DC
1	1100 VDC	$3 \times 400 / 690$ VAC	3×690 VAC	4,2 kV DC
	1400 VDC	$3 \times 480 / 830$ VAC	3×1000 VAC	4,2 kV DC

(Please ask for it or download it: www.frizlen.com).

A version of the excess temperature monitoring particularly suited for long-term overloading is to equip with a temperature switch with two wires. It opens a signal contact when the set temperature is exceeded. The resistor is not switched off.

You can inform yourselfs about function and restrictions by our data sheet „Tripping of monitoring device".

Contact ratings of the signal contact:

- 6,3 A / 230 VAC ($\cos p h i=0,6$) resp. 2,0 A / 24 VDC

Storage temperature: $-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Operation temperature: $-30^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. If the ambient temperature is higher than $40^{\circ} \mathrm{C}$, you have to decrease the continuous dissipation by 4% per 10 K temperature rise!
Installation altitude: 2000 m above sea level, you have to decrease the continuous dissipation for 10% per 1000 m altitude, maximum altitude 5000 m above sea level

Typical power/ Continuous dissipation/ Ventilation/ Temperatures

The given typical power values are valid for 100% duty cycle factor (DCF) (continuous dissipation) under the following conditions:

- temperature rise of 200 K at the surface of fixed resistors (degree of protection> IP00)
- temperature rise of 300 K at the surface of fixed resistor elements (degree of protection IP00).
- unhindered access of cooling air
- unhindered diverting of warmed up air (keep a minimum separation distance of approx. 200 mm to neighbouring components/walls and of approx. 300 mm to components above/ceiling)

Wirewound flat resistors

Since electrical energy is converted into heat, it is inevitable that the exhaust air will be heated up, as well as the section of enclosure at the surface.
The highest temperature with typical power may be maximum $200^{\circ} \mathrm{C}$ above the ambient temperature. Since the cooling of the devices is accomplished by convection, the above mentioned aspects have absolutely to be considered.

In case of insufficient cooling or false mounting the resistor or the surrounding devices could be overheated or ruined.

Depending upon use it can be possible, to increase the continuous dissipation of the resistors, if higher temperatures are accepted. With increase e.g. of 130% of the typical power you will have a rise in temperature of 350 K at the surface of the resistor. In other cases of applications the continuous dissipation must be reduced, for example with temperature sensitive devices in the surrounding. The dependence between temperature rise and actual continuous dissipation is shown in the diagram below.

Excess temperature in dependence of continuous dissipation

Normal operation range (up to 130\%):
Recommended operation range for maximum product life and failure free operation
Allowable threshold (up to 160\%):
Allowable operation range, danger of shorter product life and higher failure probability
Unallowable operation range (more than 160\%):
Danger of excessive heat and destruction of resistor and neighbouring components

Short time dissipation/ Total cycle time/ Duty cycle factor(DCF)

Overload factor(OLF)

Calculation example given:
wanted: continuous dissipation

In many applications resistors are not loaded in continuous but in short time operation. In the following you will find indications, how to calculate the allowable short time dissipation with the help of the duty cycle factor (DCF) and the overload factor (OLF). If the DCF factor is not known, it can be calculated as follows:

Duty cycle factor $(D C F)=\frac{\text { Switch on time }\left(t_{\text {on }}\right)}{\text { Total cycle time }}$

Warning: The total cycle time may be maximum 120 s shorter total cycle times are possible. The total cycle times for motors are mostly higher than 120 s

By comparison of the known DCF-factor with the following diagram or table you can work out the overload factor (OLF) and/or the continuous and the short time dissipation.

Overload factor (OLF) in dependence of duty cycle factor (DCF) (Total cycle time 120s)

DCF	1%	3%	6%	15%	25%	40%	60%	80%	100%
OLF	22	13	8,2	4,2	3,0	2,2	1,5	1,12	1,0

$$
\begin{aligned}
& \text { Short time dissipation }=\text { Continuous dissipation } \times \text { OLF } \\
& \text { Continuous dissipation }=\frac{\text { Short time dissipation }}{\text { Overload factor }(\text { OLF })}
\end{aligned}
$$

The continuous and the short time dissipation can be calculated as follows:

- Resistor with a short time dissipation of $2,5 \mathrm{~kW}$ for 7 s and a total cycle time of 120s
- The duty cycle factor (DCF) is $7 \mathrm{~s}: 120 \mathrm{~s} \times 100 \%=6 \%$
- Overload factor (OLF) for 6\% DCF, according to table it is 8,2
- The continuous dissipation is $2,5 \mathrm{~kW}: 8,2=305 \mathrm{~W}$
- You need a resistor with a continuous dissipation of at least 300W
e.g. type GWAD/GYAD 320×80

Terminal details/ wire cross-section

Rated current and cross section of terminals:

Type	Abbreviation	Rated current in A with 100\% DCF	Rated current in A up to 40\% DCF	Maximum cross section
porcelain- terminal	PK	16		up to 2,5 mm^{2}
Device terminals out of polyamid (PA)	G 5	30	38	$0,5-2,5(4) \mathrm{mm}^{2}$ AWG 24-12
cage clamp terminal out of PA	G 10	60	75	$0,5-10(16) \mathrm{mm}^{2}$ AWG 20-6
	ST2,5	20	25	up to 2,5 (4) $\mathrm{mm}^{2} ;$ AWG 28-12
	ST 4 6	30	38	up to 4,0 (6) $\mathrm{mm}^{2} ;$ AWG 28-10
	ST 10	51	52	up to 6 (10) $\mathrm{mm}^{2} ;$ AWG 24-8
	ST	72	up to 10 (16) $\mathrm{mm}^{2} ;$ AWG 24-6	

The values in brackets are for solid conductors or for single wiring.
More terminal types on request or on demand.
The rated current is calculated in each case due to the Ohm`s law as follows:

$$
I=\sqrt{\frac{P}{R}}
$$

whereas
P is the power of the resistor and
R is the value of the resistance

Mounting Please mind the mounting indications in the respective series! You will find these icons in the data sheets:

Allowable: On horizontal surfaces

Allowable: On vertical surfaces terminals/wires at the bottom

Not allowable: On vertical surfaces terminals/wires at the top, left or right.

Type series GU.. / GZ.

5 - 300 W, IP 00, connection at wires or soldering lugs

Technologies

- superflat construction form
- practically any length or width possible within maximum dimensions
- extremely adjustable to the given space
- outstandingly appropriate for integration
- high pulse power ratings of versions with insulating oxidized wire

Application

An important application is the use as internal braking resistors as well as series resistors for current limiting when charging the intermediate circuit capacitors of frequency converters.

These resistors are fitting extremely well into the given space. Further application as load or protective resistor.

Special designs

- low noise and low induction
- with centre taps, i.e.. with several partial resistors on one strap

Wirewound mica flat resistor, degree of protection IP00. Maximum width up to 115 mm , maximum length up to 300 mm . Depending upon version either wired with blank (GZ..) or with insulating-oxidized wire (GU..). We fix the blank wire of the standard version by an additional strip of cementing.
${ }^{(3)}$ optional, type designation would be GZU.. or GUU, e.g. GZU 110x40-20

Connection types and versions

Version G...x.. D; (Illustr. s. middle left column, illustr. above)
mica flat resistor with connection at 2 hard soldered wires D1 and D2.
Version G...x.. L; (Illustr. s. middle left column, illustr. below) mica flat resistor with 2 soldering lugs (optionally double soldering lugs) as connection points, prepared to be soldered into a printed circuit board.

Dimensioning

Power per wire wound space is valid for a surface excess temperature of 200 K

$$
P^{\prime}=0,02 \frac{\mathrm{~W}}{\mathrm{~mm}^{2}}=\left(2,0 \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}\right)
$$

The total power of a mica flat resistor depends upon the wire wound space.
You can calculate as follows:

$$
A=C \times B
$$

(dim. in mm)
The total power is therefore

$$
P=P^{\prime} \times A
$$

(power in W)
You can calculate the total length as follows :
With $\mathrm{B} \geq 33 \mathrm{~mm}: \quad L=C+18 \mathrm{~mm}$, with $\mathrm{B} \leq 32 \mathrm{~mm}: \quad L=C+48 \mathrm{~mm}$
The values of P^{\prime} for short time operation (depending upon DCF) amount to:

DCF	100%	60%	40%	25%	15%	6%
$P^{\prime}\left(\mathrm{W} / \mathrm{mm}^{2}\right)$	0,02	0,03	0,044	0,06	0,084	0,164

These overload factors are valid for a total cycle time of maximum120 s!

Example of dimensioning and selection of a specific unit:

braking resistor for frequency converter for integration into an enclosure, connection at wires; for short time operation of 180 W at 25% DCF and a total cycle time of 120 s ; resistance value 100Ω; calculation of the necessary space: $A=180 \mathrm{~W}: 0,06 \mathrm{~W} / \mathrm{mm}^{2}=3000 \mathrm{~mm}^{2}$; the winding length at a supposed width of 50 mm is $60 \mathrm{~mm}\left(3000 \mathrm{~mm}^{2}: 50 \mathrm{~mm}\right)$. The total length would be $78 \mathrm{~mm}(60+18$ mm distance from edge); type designation would be: GZ 78x50D-100; connection at 2 wires SIF $1,5 \mathrm{~mm}^{2}$, each 200 mm long, equipped with conductor sleeves. Resistor rated for 180 W at 25 \% DCF, which complies with a continuous dissipation of 60 W

Type series GXTD

Technologies

- superflat construction form, max. $5,0 \mathrm{~mm}$
- practically any length or width possible within the maximum dimensions
- extremely adjustable to the given space
- outstandingly appropriate for integration
- higher continuous dissipation by mounting directly onto heat sink or cooling surface
- test voltage for type GXTD is $2,5 \mathrm{kV}$
- test voltage for optional type GKTD up to $7,7 \mathrm{kV}$

Application

An important application is the use as internal braking resistors as well as series resistors for current limiting when charging the intermediate circuit capacitors of frequency converters.

These resistors are fitting extremely well into the given space. An additional application is the usage as heat resistor.

Special design

- enclosure made of stainless steel
- connections according to customer wishes, faston receptable, cable lug etc.
- different length of the wires

Wirewound flat resistor, degree of protection IP 40. Maximum width up to 200 mm , maximum length up to 400 mm . Standard version with aluminium-zink enclosure. With 2 FEP-wires, AWG 18 ($0,79 \mathrm{~mm}^{2}$), 0,3 m long.

Versions

Standard - design GXTD ..X..
Wirewound mica flat resistor, performed for a test voltage of $2,5 \mathrm{kV}$, for a DC voltage up to 800 VDC.

At the moment in preparation:
Design GKTD ..x..
Wirewound mica flat resistor, performed for a test voltage of $7,7 \mathrm{kV}$, for a DC voltage up to 848 VDC.

Dimensioning

The power per space is

$$
P^{\prime}=0,012 \frac{W}{m^{2}}=\left(1,20 \frac{W}{c m^{2}}\right)
$$

The total power of a mica flat resistor depends upon the wire wound space A.
The total power is therefore:

$$
P=P^{\prime} \times A
$$

(power in W)
You can calculate as follows:
$A=L \times B$
(dim. in mm)

Example of dimensioning and selection of a specific unit:

Braking resistor for frequency converter for integration into an enclosure, connection with wires; resistance value 100Ω; continuous dissipation 100 Watt , you can calculate the dimensions: $A=P / P^{\prime}=100 \mathrm{~W}: 0,012 \mathrm{~W} / \mathrm{mm}^{2}=8333 \mathrm{~mm}^{2}$. Taking a length with $L=100 \mathrm{~mm}$, you receive the width $B=A / L=8333 \mathrm{~mm}^{2}: 100 \mathrm{~mm}=83$ mm . So you get the width B 84 mm rounded and a given length L 100 mm .
Type designation for standard-design $2,5 \mathrm{kV}$ test voltage, type is GXTD 100x84-100; connection at 2 wires AWG 18, each 300 mm long.

Type series GLAD, GMAD,

Technologies

- compact construction form in a rectangular profile with rib-shaped cooling
- short-circuit proof
- self-extinguishing
- degree of protection IP 40
- higher continuous dissipation by mounting directly onto heat sink or cooling surface

By mounting directly onto an appropriate cooling surface or onto a heat sink the continuous dissipation can be increased resp. the surface temperature can be lowered. Typical factors for an increase are 1,5 up to 5 , depending on type, ventilation and size of the cooling surface or heat sink.

Application

Different applications derive from the various dimensions in width, height and length.

An important application is the use as braking resistor for motor/generator drive of motors with frequency converters. Because of their degree of protection the resistors can perfectly be integrated into frequency converters or switch cabinets.
$40-165$ W, IP 40, profile x34 and x13

Short-circuit proof wirewound flat resistor, degree of protection IP 40 in blank aluminium enclosure. Design with 2 PTRadox-wires, AWG 18/19 (0,82 mm²), 0,5 m long.
There are 4 versions available:
horizontal - type series GLAD vertical - type series GMAD
${ }^{(3)}$ optionally, type designation would be G.ADU.., e.g. GLADU 207x34-100
Electrical and mechanical data

Type	continuous dissipation in W at $40^{\circ} \mathrm{C}$, 100\%DCF and surface excess temperature of200 K 250 K typical -power		production range Ω-value		dimensions in mm							$\begin{aligned} & \text { weight } \\ & \text { in } \mathrm{g} \end{aligned}$
GLAD 100x34	40	60	1,0	3,3k	100	50	34	13	1,5	88	4,5	100
GLAD 180x34	85	125	1,5	4,7k	180	50	34	13	1,5	168	4,5	150
GLAD 207x34	100	150	2,2	6,8k	207	50	34	13	1,5	195	4,5	180
GLAD 230x34	110	165	3,3	10k	230	50	34	13	1,5	218	4,5	200
GMAD 100x13	40	60	1,0	3,3k	100	65	34	13	1,5	88	4,5	100
GMAD 180x13	85	125	1,5	4,7k	180	65	34	13	1,5	168	4,5	150
GMAD 207x13	100	150	2,2	6,8k	207	65	34	13	1,5	195	4,5	180
GMAD 230x13	110	165	3,3	10k	230	65	34	13	1,5	218	4,5	200

The given power rating values are valid for 100% CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF). (Also see pages T306E and T307E).

ED	60%	40%	25%	15%	6%	3%	1%
ÜF	1,5	2,2	3,0	4,2	8,2	13	22

These overload factors are valid for a total cycle time of maximum 120 s .

Type series GLAD, GMAD, GNAD, GPAD

Technologies

- compact construction form in a rectangular profile
- short-circuit proof
- self-extinguishing
- degree of protection IP 40
- higher continuous dissipation by mounting directly onto heat sink or cooling surface

By mounting directly onto an appropriate cooling surface or onto a heat sink the continuous dissipation can be increased resp. the surface temperature can be lowered. Typical factors for an increase are 1,5 up to 5 , depending on type, ventilation and size of the cooling surface or heat sink.

Option: temperature switch (..Q)

This type can be fitted with a $180^{\circ} \mathrm{C}$ temperature switch for monitoring, which has 2 connection wires.

Type designation would be: G.ADQ ...

Application

Different applications derive from the various dimensions in width, height and length. We provide e.g. 4 different constructions forms for 155 W .

An important application is the use as braking resistor for motor/generator drive of motors with frequency converters.
Because of their degree of protection the resistors can perfectly be integrated into frequency converters or switch cabinets.
$50-500$ W, IP 40, profile x40, x20, x60 and x30

Short-circuit proof wirewound flat resistor, degree of protection IP 40 in blank aluminium enclosure. Design with 2 wires $0,5 \mathrm{~m}$ long.
Type series: GLAD, GMAD with 2 Radox-wires, AWG 18/19 ($0,82 \mathrm{~mm}^{2}$)
Type series: GNAD, GPAD with 2 FEP-wires, AWG $14 / 19$ ($1,9 \mathrm{~mm}^{2}$)
There are 2 versions available: horizontal - type series GLAD, GNAD
vertical - type series GMAD, GPAD
${ }^{(3)}$ optionally, type designation would be G.ADU.., e.g. GLADU 210x40-100

Electrical and mechanical data

Type series	continuous dissipation in W at $40^{\circ} \mathrm{C}$, 100% DCF and surface excess temperature of200 K 250 K typical -power		production range Ω-value		dimensions in mm							weight in g
GLAD 100x40	50	75	1,0	3,3k	100	45	40	20	2	82	4,3	145
GLAD 150x40	65	100	1,5	4,7k	150	45	40	20	2	132	4,3	215
GLAD 210x40	100	150	2,2	6,8k	210	45	40	20	2	192	4,3	300
GLAD 240x40	120	180	3,3	10k	240	45	40	20	2	222	4,3	340
GLAD 300x40	155	235	4,7	15k	300	45	40	20	2	282	4,3	430
GLAD 360x40	190	285	5,6	18k	360	45	40	20	2	342	4,3	515
GMAD 100x20	50	75	1,0	3,3k	100	65	20	40	2	82	4,3	145
GMAD 150x20	65	100	1,5	4,7k	150	65	20	40	2	132	4,3	215
GMAD 210×20	100	150	2,2	6,8k	210	65	20	40	2	192	4,3	300
GMAD 240x20	120	180	3,3	10k	240	65	20	40	2	222	4,3	340
GMAD 300x20	155	235	4,7	15k	300	65	20	40	2	282	4,3	430
GMAD 360x20	190	285	5,6	18k	360	65	20	40	2	342	4,3	515
GNAD 165x60	110	165	2,2	6,8k	165	60	60	30	3	146	5,3	590
GNAD 215x60	155	235	3,3	10k	215	60	60	30	3	196	5,3	770
GNAD 265x60	200	300	4,7	15k	265	60	60	30	3	246	5,3	950
GNAD 335x60	270	400	6,8	22k	335	60	60	30	3	316	5,3	1200
GNAD 405x60	330	500	8,2	27k	405	60	60	30	3	386	5,3	1450
GPAD 165x30	110	165	2,2	6,8k	165	73	30	60	3	146	5,3	590
GPAD 215x30	155	235	3,3	10k	215	73	30	60	3	196	5,3	770
GPAD 265x30	200	300	4,7	15k	265	73	30	60	3	246	5,3	950
GPAD 335x30	270	400	6,8	22k	335	73	30	60	3	316	5,3	1200
GPAD 405x30	330	500	8,2	27k	405	73	30	60	3	386	5,3	1450

The given power rating values are valid for 100\%CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF). (Also see pages T306E and T307E).

ED	60%	40%	25%	15%	6%	3%	1%
ÜF	1,5	2,2	3,0	4,2	8,2	13	22

These overload factors are valid for a total cycle time of maximum 120 s .

Type series GXAD / GXMD

Technologies

- rated voltage max. 1100 VDC
- very flat, compact construction form
- short-circuit proof
- self-extinguishing
- degree of protection IP 40
- higher continuous dissipation by mounting directly onto heat sink or cooling surface
- compact construction form

By mounting directly onto an appropriate cooling surface or onto a heat sink the continuous dissipation can be increased resp. the surface temperature can be lowered. Typical factors for an increase are 1,5 up to 5 , depending on type, ventilation and size of the cooling surface or heat sink.

Application

E.g. as brake-resistor for frequency converters (fc). Based on the small sizes these resistors can be mounted directly to the housing of a fc.

Special design

- E.g. with higher protection degree IP54/67

You will find further examples on page T317E.
$100-300$ W, IP 40, profile $\times 70$

Short-circuit proof wirewound flat resistor, in blank aluminium enclosure. With different sizes and for different voltages.PT Design with 2 PTFE-wires, AWG 14/19 (mind. 1,9 mm²), 0,5 m long.
Type series: GXAD.. rated voltage max. 848 VDC
Type series: GXMD.. rated voltage max. 1100 VDC
${ }^{3}$ optionally with different UL - certification, see page T305E, type designation would be GX.DU.., e.g. GXADU $216 \times 70-33$

Electrical and mechanical data

The given power rating values are valid for 100\%CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF). (Also see pages T306E and T307E).

ED	60%	40%	25%	15%	6%	3%	1%
ÜF	1,5	2,2	3,0	4,2	8,2	13	22

These overload factors are valid for a total cycle time of maximum 120 s .
GX.D...x70

13 M-0600-00-000

Example of dimensioning and selection of a specific unit:

Braking resistor for frequency converter drive, short time power: 1,2 kW at 6\% DCF, total cycle time shorter than 120 s , intermediate voltage circuit 1050 V ; resistance value 100Ω; calculating of continuous dissipation:
$1,2 \mathrm{~kW}: 8,2=146 \mathrm{~W}$; degree of protection IP54.
Selected: GXMD $160 \times 70-100$ with continuous dissipation 150 W

Type series GXAD / GXMD

Technologies

- rated voltage max. 1100 VDC
- very flat, compact construction form
- short-circuit proof
- self-extinguishing
- degree of protection IP 40
- higher continuous dissipation by mounting directly onto heat sink or cooling surface
- compact construction form

By mounting directly onto an appropriate cooling surface or onto a heat sink the continuous dissipation can be increased resp. the surface temperature can be lowered. Typical factors for an increase are 1,5 up to 5 , depending on type, ventilation and size of the cooling surface or heat sink.
We provide various mounting brackets as accessories for different mounting types, see page T350E

Option: temperature switch (.Q)

This type can be fitted with a $180^{\circ} \mathrm{C}$ temperature switch for monitoring, which has 2 connection wires.

Type designation would be: GX.DQ ...

Application

E.g. as brake-resistor for frequency converters (fc). Based on the small sizes these resistors can be mounted directly to the housing of a fc.

Special design

- E.g. with higher protection degree IP54/67

You will find further examples on page T317E.

100 - 450 W, IP 40, profile x80 and x120

848 V
DC
DC

Short-circuit proof wirewound flat resistor, in blank aluminium enclosure. With different sizes and for different voltages.PT Design with 2 PTFE-wires, AWG 14/19 (mind. 1,9 mm²), 0,5 m long.
Type series: GXAD.. rated voltage max. 848 VDC
Type series: GXMD.. rated voltage max. 1100 VDC
${ }^{3}$ optionally with different UL - certification, on page T305E, type designation would be GX.DU.. or GX.DQU.., e.g. GXADQU 160x80-100

Electrical and mechanical data

Type series $\begin{aligned} & \text { GXAD-848V } \\ & \text { GXMD-1100V } \end{aligned}$	continuous dissipation in W at $40^{\circ} \mathrm{C}$, 100% DCF and surface excess temperature of		production range Ω-value		dimensions in mm						$\begin{aligned} & \text { weight } \\ & \text { in g } \end{aligned}$
GX.D. 110x80	100	150	2,7	3,3k	110	98	60	80	26,2	15	300
GX.D. 160x80	150	225	4,7	5,6k	160	148	60	80	26,2	15	420
GX.D. 216x80	200	300	6,8	8,2k	216	204	60	80	26,2	15	550
GX.D. 216x120	300	450	10,0	12k	216	204	100	120	35,8	20	1100

The given power rating values are valid for 100% CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF). (Also see pages T306E and T307E).

ED	60%	40%	25%	15%	6%	3%	1%
ÜF	1,5	2,2	3,0	4,2	8,2	13	22

These overload factors are valid for a total cycle time of maximum 120 s .

Type series GHAD, GVAD, GAAD, GBAD

Technologies

- compact construction form in a rectangular profile
- short-circuit proof
- self-extinguishing
- degree of protection IP 54
- suited for rough environment
- higher continuous dissipation by mounting directly onto heat sink or cooling surface.

By mounting directly onto an appropriate cooling surface or onto a heat sink the continuous dissipation can be increased resp. the surface temperature can be lowered. Typical factors for an increase are 1,5 up to 5 , depending on type, ventilation and size of the cooling surface or heat sink.

Option: Temperature switch (..Q)

This type series can be fitted with a $180^{\circ} \mathrm{C}$ temperature switch for monitoring, which has 2 connection wires.

Type designation would be: G.ADQ ..

Application

Different applications derive from the various dimensions in width, height and length. We provide e.g. 4 different constructions forms for 155 W .

An important application is the use as braking resistor for motor/generator drive of motors with frequency converters. They are perfectly suited for rough environments because of their high degree of protection. With adequate mechanical protection the resistors can be mounted outside the switch cabinets directly at the fc or motor.
$50-500$ W, IP 54, profile x40, x20, x60 and x30

848 V
DC

Short-circuit proof wirewound flat resistor, degree of protection IP 54 in blue anodized aluminium enclosure. Design with 2 wires $0,5 \mathrm{~m}$ long.
Type series: GHAD, GVAD with 2 Radox-wires, AWG 18/19 ($0,82 \mathrm{~mm}^{2}$)
Type series: GAAD, GBAD with 2 FEP-wires, AWG 14/19 (1,9 mm ${ }^{2}$)
There are 2 versions available: horizontal - type series GHAD, GAAD
vertical - type series GVAD, GBAD
${ }^{(3)}$ optionally, type designation would be G.ADU.., e.g. GHADU 240x40-180

Electrical and mechanical data

Type series	continuous dissipation in W at $40^{\circ} \mathrm{C}$, 100\%DCF and surface excess temperature of		production range Ω-value		dimensions in mm							weight in g
GHAD. 100x40	50	75	1,0	3,3k	100	45	40	20	2	82	4,3	145
GHAD. 150x40	65	100	1,5	4,7k	150	45	40	20	2	132	4,3	215
GHAD. 210x40	100	150	2,2	6,8k	210	45	40	20	2	192	4,3	300
GHAD. 240x40	120	180	3,3	10k	240	45	40	20	2	222	4,3	340
GHAD. 300×40	155	235	4,7	15k	300	45	40	20	2	282	4,3	430
GHAD. 360x40	190	285	5,6	18k	360	45	40	20	2	342	4,3	515
GVAD. 100x20	50	75	1,0	3,3k	100	45	20	40	2	82	4,3	145
GVAD. 150x20	65	100	1,5	4,7k	150	65	20	40	2	132	4,3	215
GVAD. 210x20	100	150	2,2	6,8k	210	65	20	40	2	192	4,3	300
GVAD. 240x20	120	180	3,3	10k	240	65	20	40	2	222	4,3	340
GVAD. 300×20	155	235	4,7	15k	300	65	20	40	2	282	4,3	430
GVAD. 360x20	190	285	5,6	18k	360	65	20	40	2	342	4,3	515
GAAD. 165x60	110	165	2,2	6,8k	165	60	60	30	3	146	5,3	590
GAAD. 215x60	155	235	3,3	10k	215	60	60	30	3	196	5,3	770
GAAD. 265x60	200	300	4,7	15k	265	60	60	30	3	246	5,3	950
GAAD. 335×60	270	400	6,8	22k	335	60	60	30	3	316	5,3	1200
GAAD. 405×60	330	500	8,2	27k	405	60	60	30	3	386	5,3	1450
GBAD. 165x30	110	165	2,2	6,8k	165	73	30	60	3	146	5,3	590
GBAD. 215x30	155	235	3,3	10k	215	73	30	60	3	196	5,3	770
GBAD. 265x30	200	300	4,7	15k	265	73	30	60	3	246	5,3	950
GBAD 335x30	270	400	6,8	22k	335	73	30	60	3	316	5,3	1200
GBAD 405x30	330	500	8,2	27k	405	73	30	60	3	386	5,3	1450

NOTE: excess temperature values of 200 K should not be exceeded in order not to risk the degree of protection!

The given power rating values are valid for 100% CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF). (Also see pages T306E and T307E).
GHAD, GVAD, GAAD, GBAD... (the figure shows the version with temperature switch (Q))

Type series GWAD / GYAD

Technologies

- very flat, compact construction form
- short-circuit proof
- self-extinguishing
- degree of protection up to IP 67
- suited for rough environment
- higher continuous dissipation by mounting directly onto heat sink or cooling surface
- easy mounting by T-slot

By mounting directly onto an appropriate cooling surface or onto a heat sink the continuous dissipation can be increased resp. the surface temperature can be lowered. Typical factors for an increase are 1,5 up to 5 , depending on type, ventilation and size of the cooling surface or heat sink.
We provide various mounting brackets as accessories for different mounting types, see page T350E.

Option: temperature switch (..Q) (only for type GW..Q.. - not for GY..)

This type can be fitted with a $180^{\circ} \mathrm{C}$ temperature switch for monitoring which has 2 connection wires.

Type designation would be: GWADQ ...

Application

Braking resistors for frequency converters (fc). They are perfectly suited for rough environments because of their high degree of protection. With adequate mechanical protection of the wires the resistors can be mounted outside the switch cabinets directly at the fc or motor.
$100-750$ W, IP 54 or IP 67 , profile $\times 80$ and $x 120$

Special design

- with terminals, terminal box or screened cable

You will find further examples on page T318E and T340E.

Short-circuit proof wirewound flat resistor, in anodized aluminium enclosure. Design with 2 PTFE-wires, AWG $14 / 19$ (1,9 mm²), $0,5 \mathrm{~m}$ long.

Version with degree of protection IP 54 - type series GWAD... (standard version) Version with degree of protection IP 67 - type series GYAD...
${ }^{(3)}$ optionally, type designation G.ADU or G.ADQU.., e.g. GWADQU $420 \times 80-33$

Electrical and mechanical data

Type series $\begin{aligned} & \text { GWAD - IP54 } \\ & \text { GYAD - IP67 } \end{aligned}$	continuous dissipation in W at $40^{\circ} \mathrm{C}$, 100% DCF and surface excess temperature of		production range Ω-value		dimensions in mm						weight in g
G.AD. 110x80	100	150	2,7	3,3k	110	98	60	80	26,2	15	300
G.AD. 160x80	150	225	4,7	5,6k	160	148	60	80	26,2	15	420
G.AD. 216x80	200	300	6,8	8,2k	216	204	60	80	26,2	15	550
G.AD. 320x80	300	450	10,0	12k	320	2x154	60	80	26,2	15	850
G.AD. 420x80	400	600	12,0	18k	420	2x204	60	80	26,2	15	1100
G.AD. 520x80	500	750	18,0	22k	520	4x127	60	80	26,2	15	1350
G.AD. 216x120	300	450	10,0	12k	216	204	100	120	35,8	20	1100

NOTE: excess temperature values of 200 K should not be exceeded in order not to risk the degree of protection!

The given power rating values are valid for 100\%CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF). (Also see pages T306E and T307E).

ED	60%	40%	25%	15%	6%	3%	1%
ÜF	1,5	2,2	3,0	4,2	8,2	13	22

These overload factors are valid for a total cycle time of maximum 120 s .
GWAD / GYAD... (the figure shows the version with temperature switch (Q))

Type series GWAE..

Technologies

- very flat, compact construction form
- short-circuit proof
- self-extinguishing
- degree of protection IP 54
- incl. screened cable
- higher continuous dissipation by mounting directly onto heat sink or cooling surface
- easy mounting by T-slot

By mounting directly onto an appropriate cooling surface or onto a heat sink the continuous dissipation can be increased resp. the surface temperature can be lowered. Typical factors for an increase are 1,5 up to 5 , depending on type, ventilation and size of the cooling surface or heat sink.

We provide various mounting brackets as accessories for different mounting types; see page T350E for further information.

Application

E.g. as braking resistors for servo- or frequency converters. Due to a screened cable and to the high degree of protection the resistors can also be mounted outside the switch cabinets.

Special design

- longer cable
$100-500 \mathrm{~W}$, IP 54 , profile $\times 80$, connection by screened cable

Short-circuit proof wirewound flat resistor with degree of protection IP 54 in blue anodized aluminium enclosure. Design with screened cablePT $3 \times 1,3 \mathrm{~mm}^{2}$ (AWG $16 / 19$), $200^{\circ} \mathrm{C}, 0,75 \mathrm{~m}$ long.
${ }^{(3)}$ optionally, type designation would be GWAEU ...,

Electrical and mechanical data

Type series	continuous dissipation in W at $40^{\circ} \mathrm{C}$, 100% DCF and surface excess temperature of 200 K	production range Ω-value		dimensions in mm		weight in g
		from	up to	A	B	
GWAE. 110×80	100	2,7	3,3k	110	98	380
GWAE. 160×80	150	4,7	5,6k	160	148	500
GWAE. 216×80	200	6,8	8,2k	216	204	630
GWAE. 320×80	300	10,0	12 k	320	2x154	930
GWAE. 420×80	400	12,0	18 k	420	2x204	1180
GWAE. 520×80	500	18,0	22 k	520	4×127	1430

The given power rating values are valid for 100% CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF). (Also see pages T306E and T307E).

ED	60%	40%	25%	15%	6%	3%	1%
ÜF	1,5	2,2	3,0	4,2	8,2	13	22

These overload factors are valid for a total cycle time of maximum 120 s .

Type series KWAD.. / KYAD..

Technologies

- extremely compact construction form
- short-circuit proof
- self-extinguishing
- degree of protection up to IP 67
- suited for rough environment
- easy mounting by T-slot

Please note: The type series K.AD have no mounting holes.
We provide various mounting brackets as accessories for different mounting types; see page T351E - T352 for further information.

Option: Temperature switch (..Q) (only for type KW..Q.. - not for KY..)

This type series can be fitted with a $180^{\circ} \mathrm{C}$ temperature switch for monitoring which has 2 connection wires.

Type designation would be: KWADQ ...

Application

E.g. as brake resistor for frequency converters (fc). They are perfectly suited for rough environments because of their high degree of protection. With adequate mechanical protection of the wires, the resistors can be mounted outside the switch cabinets directly at the fc or motor.

Special design

- E.g. with terminals, terminal box or screened wiring or in multiple combination for higher dissipation values. See pages T320E and T341E. profile x91

Short-circuit proof wirewound flat resistor in blue anodized aluminium enclosure.
Design with 2 PTFE-wires, AWG $14 / 19\left(1,9 \mathrm{~mm}^{2}\right), 0,5 \mathrm{~m}$ long.
Version with degree of protection IP 54 - type series KWAD.. (standard version) Version with degree of protection IP 67 - type series KYAD..
${ }^{(3)}$ optionally, type designation would be K.ADU or. K.ADQU.., e.g. KWADQU 420x91-33

Electrical and mechanical data

Type series	continuous dissipation in W at $40^{\circ} \mathrm{C}, 100 \% \mathrm{DCF}$ and surface excess temperature of		production range Ω-value		dimensions in mm	weight in kg
$\begin{aligned} & \text { KWAD - IP54 } \\ & \text { KYAD - IP67 } \\ & \hline \end{aligned}$	200 Ktical power	250 K	from	up to	A	
K. AD. 110×91	150	225	2,7	3,3k	110	0,7
K. AD. 160×91	225	340	4,7	5,6k	160	1,0
K. AD. 216×91	300	450	6,8	8,2k	216	1,4
K. AD. 320×91	450	675	10,0	12 k	320	2,0
K. AD. 420×91	600	900	12,0	18 k	420	2,6
K. AD. 520×91	750	1125	18,0	22 k	520	3,2
K. AD. 620×91	900	1350	22,0	27 k	620	3,8
K. AD. 720×91	1050	1575	33,0	33 k	720	4,4

NOTE: excess temperature values of 200 K should not be exceeded in order not to risk the degree of protection!

The given power rating values are valid for 100% CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF). (Also see pages T306E and T307E).

ED	60%	40%	25%	15%	6%	3%	1%
ÜF	1,5	2,2	3,0	3,6	6,3	9,3	15

These overload factors are valid for a total cycle time of maximum 120 s .

150 - 1050 W, IP 54, profile x91, connection by screened cable

Type series KWAE..

Technologies

- extremely compact construction form
- short-circuit proof
- self-extinguishing
- degree of protection IP 54
- incl. screened cable
- easy mounting by T-slot

Please note: The type series KWAE have no mounting holes.
We provide various mounting brackets as accessories for different mounting types; see page T351E - T352 for further information.

Application

E.g. as brake resistor for servo- or frequency converters. Due to the screened cable and to the high degree of protection the resistors also can be mounted outside of switch cabinets.

Special design

- longer cable

c ${ }^{\circ}$

Short-circuit proof wirewound flat resistor with degree of protection 54 in blue anodized aluminium enclosure. Design with screened cable $3 \times 1,3 \mathrm{~mm}^{2}$ (AWG $16 / 19), 200^{\circ} \mathrm{C}, 0,75 \mathrm{~m}$ long
${ }^{(3)}$ optionally, type designation would be KWAEU ...

Electrical and mechanical data

Type series	continuous dissipation in W at $40^{\circ} \mathrm{C}, 100 \% \mathrm{CCF}$ and surface excess temperature of 200 K	production range Ω-value from		dimensions in mm	weight in kg
	150	2,7	$3,3 \mathrm{k}$	110	0,8
KWAE. 110×91	225	4,7	$5,6 \mathrm{k}$	160	1,1
KWAE. 160×91	300	6,8	$8,2 \mathrm{k}$	216	1,5
KWAE. 216×91	450	10,0	12 k	320	2,1
KWAE. 320×91	600	12,0	18 k	420	2,7
KWAE. 420×91	750	18,0	22 k	520	3,3
KWAE. 520×91	900	22,0	27 k	620	3,9
KWAE. 620×91	1050	33,0	33 k	720	4,5

The given power rating values are valid for 100\%CD (continuous dissipation) For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF). (Also see pages T306E and T307E).

ED	60%	40%	25%	15%	6%	3%	1%
ÜF	1,5	2,2	3,0	3,6	6,3	9,3	15

These overload factors are valid for a total cycle time of maximum 120 s .

Type series GAMD, GBMD

Technologies

- rated voltage max. 1100 VDC
- compact construction form in a rectangular profile
- short-circuit proof
- self-extinguishing
- protection degree IP 54
- usable in harsh environment
- higher continuous dissipation by mounting directly onto heat sink or cooling surface

By mounting directly onto an appropriate cooling surface or onto a heat sink the continuous dissipation can be increased resp. the surface temperature can be lowered. , Typical factors for an increase are 1,5 up to 5 , depending on type, ventilation and size of the cooling surface or heat sink.

Option: temperature switch (..Q)

This type can be fitted with a $180^{\circ} \mathrm{C}$ temperature switch for monitoring, which has 2 connection wires.

Type designation would be: G.MDQ ...

Application

Different applications derive from the various dimensions in width, height and length.

An important application is the use as braking resistor for motor/generator drive of motors with frequency converters. This type series is for frequency converters with higher voltage. With adequate mechanical protection the resistors can be mounted outside the switch cabinets directly at the fc or motor.
$110-500 \mathrm{~W}$, IP 54 , profile $x 60$ and $x 30$

Short-circuit proof wirewound flat resistor, degree of protection IP 54 in blue anodized aluminium enclosure. Design with 2 FEP-wires, AWG 14/19 (2,1 mm^{2}), $1000 \mathrm{~V}, 0,5 \mathrm{~m}$ long.
There are 2 versions available:
horizontal - type series GAMD vertical - type series GBMD
${ }^{(3)}$ optionally, type designation would be G.MDU.., e.g. GAMDU $215 \times 60-180$
Electrical and mechanical data

Type series	continuous dissipation in W at $40^{\circ} \mathrm{C}$, $100 \% \mathrm{DCF}$ and surface excess temperature of 200 K Typi cal cower		production range Ω-value		dimensions in mm							weight in g
GAMD. 165x60	110	165	2,2	6,8k	165	60	60	30	3	146	5,3	590
GAMD. 215x60	155	235	3,3	10k	215	60	60	30	3	196	5,3	770
GAMD. 265x60	200	300	4,7	15k	265	60	60	30	3	246	5,3	950
GAMD. 335x60	270	400	6,8	22k	335	60	60	30	3	316	5,3	1200
GAMD. 405x60	330	500	8,2	27k	405	60	60	30	3	386	5,3	1450
GBMD. 165x30	110	165	2,2	6,8k	165	73	30	60	3	146	5,3	590
GBMD. 215×30	155	235	3,3	10k	215	73	30	60	3	196	5,3	770
GBMD. 265×30	200	300	4,7	15k	265	73	30	60	3	246	5,3	950
GBMD. 335×30	270	400	6,8	22k	335	73	30	60	3	316	5,3	1200
GBMD. 405x30	330	500	8,2	27k	405	73	30	60	3	386	5,3	1450

Note: \quad Excess temperature values of 200 K should not be exceeded in order not to risk the degree of protection!

The given power rating values are valid for 100\%CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF). (Also see pages T306E and T307E).

ED	60%	40%	25%	15%	6%	3%	1%
ÜF	1,5	2,2	3,0	4,2	8,2	13	22

These overload factors are valid for a total cycle time of maximum 120 s .

Type series GWMD / GYMD

Technologies

- rated voltage max. 1100 VDC
- very flat, compact construction form
- short-circuit proof
- self-extinguishing
- degree of protection IP 54
- usable in harsh environment
- higher continuous dissipation by mounting directly onto heat sink or cooling surface
- easy mounting by T-slot

By mounting directly onto an appropriate cooling surface or onto a heat sink the continuous dissipation can be increased resp. the surface temperature can be lowered. Typical factors for an increase are 1,5 up to 5 , depending on type, ventilation and size of the cooling surface or heat sink.
We provide various mounting brackets as accessories for different mounting types; see page T350E for further information.

Option: Temperature switch (..Q) (only for type GWMDQ.. - not for GYMD)

This type can be fitted with a $180^{\circ} \mathrm{C}$ temperature switch for monitoring, which has 2 connection wires.
Type designation would be: GWMDQ ...

Application

E.g. as brake resistor for frequency converters (fc). They are perfectly suited for rough environments because of their high degree of protection. With adequate mechanical protection of the wires the resistors can be mounted outside the switch cabinets directly at the fc or motor.

100-750 W, IP 54 or IP 67, profile x80 and x120

IP
54

Short-circuit proof wirewound flat resistor, design with 2 FEP-wires, AWG 14/19 ($2,1 \mathrm{~mm}^{2}$), $1000 \mathrm{~V}, 0,5 \mathrm{~m}$ long.

Version with degree of protection IP 54 - type GWMD... (standard version)
Version with degree of protection IP 67 - type GYMD...
${ }^{(3)}$ optionally, type designation would be G.MDU or GWMDQU..,
e.g. GWMDQU $420 \times 80-33$

Electrical and mechanical data

Type series $\begin{aligned} & \text { GWMD - IP54 } \\ & \text { GYMD - IP67 } \end{aligned}$	continuous dissipation in W at $40^{\circ} \mathrm{C}$, 100\% DCF and surface excess temperature of		producion range Ω-value		dimensions in mm						weight in g
G.MD. 110x80	100	150	2,7	3,3k	110	98	60	80	26,2	15	300
G.MD. 160x80	150	225	4,7	5,6k	160	148	60	80	26,2	15	420
G.MD. 216x80	200	300	6,8	8,2k	216	204	60	80	26,2	15	550
G.MD. 320×80	300	450	10,0	12k	320	2x154	60	80	26,2	15	850
G.MD. 420×80	400	600	12,0	18k	420	2x204	60	80	26,2	15	1100
G.MD. 520×80	500	750	18,0	22k	520	4x127	60	80	26,2	15	1350
G.MD. 216x120	300	450	10,0	12k	216	204	100	120	35,8	20	1100

Note: Excess temperature values of 200 K should not be exceeded in order not to risk the degree of protection!

The given power rating values are valid for 100% CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF). (Also see pages T306E and T307E).

ED	60%	40%	25%	15%	6%	3%	1%
ÜF	1,5	2,2	3,0	4,2	8,2	13	22

These overload factors are valid for a total cycle time of maximum 120 s .

Type series KWMD.. / KYMD..

Technologies

- rated voltage max. 1100 VDC
- extremely compact construction form
- short-circuit proof
- self-extinguishing
- degree of protection up to IP 67
- suited for rough environment
- easy mounting by T-slot

Please note: The type series K.MD have no mounting holes.
We provide various mounting brackets as accessories for different mounting types; see page T351E - T352 for further information.

Option: Temperature switch (..Q) (only for Type KW..Q.. - not for KY..)

This type can be fitted with a $180^{\circ} \mathrm{C}$ temperature switch for monitoring, which has 2 connection wires.

Type designation would be: KWMDQ ...

Application

E.g. as brake resistor for frequency converters (fc). They are perfectly suited for rough environments because of their high degree of protection. With adequate mechanical protection of the wires the resistors can be mounted outside the switch cabinets directly at the fc or motor.

150 - 1575 W, IP 54 or IP 67, profile x91

Short-circuit proof wirewound flat resistor, design with 2 FEP-wires, AWG 14/19 ($2,1 \mathrm{~mm}^{2}$), $1000 \mathrm{~V}, 0,5 \mathrm{~m}$ long.

Version with degree of protection IP 54 - type KWMD... (standard version)
Version with degree of protection IP 67 - type KYMD...
${ }^{(3)}$ optionally, type designation would be K.MDU or KWMDQU.., e.g. KWMDQU 420x91-33

Electrical and mechanical data

Type series	continuous dissipation in W at 40 and surface excess temperature of		production range Ω-value	dimensions in mm	weight in kg	
KWMD - IP54	200 Kical power	250 K	from	up to	A	
KYMD - IP67	150	225	2,7	$3,3 \mathrm{k}$	110	0,7
K. MD. 110×91	225	340	4,7	$5,6 \mathrm{k}$	160	1,0
K. MD. 160×91	300	450	6,8	$8,2 \mathrm{k}$	216	1,4
K. MD. 216×91	450	675	10,0	12 k	320	2,0
K. MD. 320×91	600	900	12,0	18 k	420	2,6
K. MD. 420×91	750	1125	18,0	22 k	520	3,2
K. MD. 520×91	900	1350	22,0	27 k	620	3,8
K. MD. 620×91	1050	1575	33,0	33 k	720	4,4

Note: Excess temperature values of 200 K should not be exceeded in order not to risk the degree of protection!

The given power rating values are valid for 100\%CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF). (Also see pages T306E and T307E).

ED	60%	40%	25%	15%	6%	3%	1%
ÜF	1,5	2,2	3,0	3,6	6,3	9,3	15

These overload factors are valid for a total cycle time of maximum 120 s .

Type series GAND, GBND

Besondere Merkmale

- rated voltage max. 1400 VDC
- compact construction form in a rectangular profile
- short-circuit proof
- self-extinguishing
- protection degree IP 54
- usable in harsh environment
- higher continuous dissipation by mounting directly onto heat sink or cooling surface

By mounting directly onto an appropriate cooling surface or onto a heat sink the continuous dissipation can be increased resp. the surface temperature can be lowered. , Typical factors for an increase are 1,5 up to 5 , depending on type, ventilation and size of the cooling surface or heat sink.

Option: temperature switch (..Q)

This type can be fitted with a $180^{\circ} \mathrm{C}$ temperature switch for monitoring. which has 2 connection wires.

Type designation would be: G.NDQ ...

Application

Different applications derive from the various dimensions in width, height and length.

An important application is the use as braking resistor for motor/generator drive of motors with frequency converters. This type series is for frequency converters with higher voltage. They are perfectly suited for rough environments because of their high degree of protection. With adequate mechanical protection the resistors can be mounted outside the switch cabinets directly at the fc or motor.
$110-500$ W, IP 54, profile $x 60$ and $x 30$
?

Short-circuit proof wirewound flat resistor, degree of protection IP 54 in blue anodized aluminium enclosure. Design with 2 FEP-wires, AWG 14/19 (2,1 mm^{2}), $1000 \mathrm{~V}, 0,5 \mathrm{~m}$ long.

There are 2 versions available:
horizontal - type series GAND vertical - type series GBND
${ }^{(8)}$ optionally, type designation would be G.NDU.., e.g. GANDU $215 \times 60-82$

Electrical and mechanical data

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type series \& \multicolumn{2}{|l|}{\begin{tabular}{l}
\multicolumn{2}{c}{ continuous } \\
dissipation in W \\
at \(40^{\circ} \mathrm{C}, 100 \%\) \\
DCF and \\
surface excess \\
temperature of \\
200 K \\
Typical \\
- \\
- \\
power
\end{tabular}} \& pro \(\Omega\) from \& ctionge alue upto \& A \& di

B \& men \& D \& G \& m \& J \& $$
\begin{aligned}
& \text { weight } \\
& \text { in } \mathrm{g}
\end{aligned}
$$

\hline GAND. 165x60 \& 110 \& 165 \& 2,2 \& 6,8k \& 165 \& 60 \& 60 \& 30 \& 3 \& 146 \& 5,3 \& 590

\hline GAND. 215x60 \& 155 \& 235 \& 3,3 \& 10k \& 215 \& 60 \& 60 \& 30 \& 3 \& 196 \& 5,3 \& 770

\hline GAND. 265x60 \& 200 \& 300 \& 4,7 \& 15k \& 265 \& 60 \& 60 \& 30 \& 3 \& 246 \& 5,3 \& 950

\hline GAND. 335x60 \& 270 \& 400 \& 6,8 \& 22k \& 335 \& 60 \& 60 \& 30 \& 3 \& 316 \& 5,3 \& 1200

\hline GAND. 405x60 \& 330 \& 500 \& 8,2 \& 27k \& 405 \& 60 \& 60 \& 30 \& 3 \& 386 \& 5,3 \& 1450

\hline GBND. 165x30 \& 110 \& 165 \& 2,2 \& 6,8k \& 165 \& 73 \& 30 \& 60 \& 3 \& 146 \& 5,3 \& 590

\hline GBND. 215×30 \& 155 \& 235 \& 3,3 \& 10k \& 215 \& 73 \& 30 \& 60 \& 3 \& 196 \& 5,3 \& 770

\hline GBND. 265×30 \& 200 \& 300 \& 4,7 \& 15k \& 265 \& 73 \& 30 \& 60 \& 3 \& 246 \& 5,3 \& 950

\hline GBND. 335×30 \& 270 \& 400 \& 6,8 \& 22k \& 335 \& 73 \& 30 \& 60 \& 3 \& 316 \& 5,3 \& 1200

\hline GBND. 405×30 \& 330 \& 500 \& 8,2 \& 27k \& 405 \& 73 \& 30 \& 60 \& 3 \& 386 \& 5,3 \& 1450

\hline
\end{tabular}

Note: Excess temperature values of 200 K should not be exceeded in order not to risk the degree of protection!

The given power rating values are valid for 100\%CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF). (Also see pages T306E and T307E).

ED	60%	40%	25%	15%	6%	3%	1%
ÜF	1,5	2,2	3,0	4,2	8,2	13	22

These overload factors are valid for a total cycle time of maximum 120 s.
GAND, GBND... (the figure shows the version with temperature switch (Q))

[^2]
Special design

- Mit Temperaturschalter (Type G.ADQ ..)

Type series GAPD, GBPD

Technologies

- rated voltage max. 4200 VDC
- compact construction form in a rectangular profile
- short-circuit proof
- self-extinguishing
- protection degree IP 54
- usable in harsh environment
- higher continuous dissipation by mounting directly onto heat sink or cooling surface

By mounting directly onto an appropriate cooling surface or onto a heat sink the continuous dissipation can be increased resp. the surface temperature can be lowered. , Typical factors for an increase are 1,5 up to 3 , depending on type, ventilation and size of the cooling surface or heat sink.

Application

An important application is the use as resistor for charging- and discharging for higher voltage. They are perfectly suited for rough environments because of their high degree of protection. With adequate mechanical protection the resistors can be mounted outside the switch cabinets.

200-300 W, IP 54, profile x60 and x30

\section*{| IP |
| :--- |
| 54 |}

Short-circuit proof wirewound flat resistor, degree of protection IP 54 in blue anodized aluminium enclosure. Design with $0,5 \mathrm{~m}$ length of silicone isolated neon cable FZLSi $1,0 \mathrm{~mm}^{2}$.

There are 2 versions available: horizontal - type series GAPD vertical - type series GBPD

Electrical and mechanical data

Type series	continuous dissipation in W at $40^{\circ} \mathrm{C}, 100 \%$ DCF and surface excess temperature of		productionrange Ω-value		dimensions in mm							$\begin{aligned} & \hline \text { weight } \\ & \text { in g } \end{aligned}$
GAPD 405x60	200	300	3,9	10k	405	60	60	30	0	13,5	386	1450
GBPD 405x30	200	300	3,9	10k	405	73	30	60	13,5	,	386	1450

Note: Excess temperature values of 200 K should not be exceeded in order not to risk the degree of protection!

The given power rating values are valid for 100% CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF). (Also see pages T306E and T307E).

ED	60%	40%	25%	15%	6%	3%	1%
ÜF	1,5	2,2	3,0	4,2	8,2	13	22

These overload factors are valid for a total cycle time of maximum 120 s.

Technologies

- very flat, compact construction form
- short-circuit proof
- self-extinguishing
- connection option for screened wiring
- GXUM.. with covered terminal box
- higher continuous dissipation by mounting direct up onto heat sink or cooling surface
- easy mounting by T-slot

By mounting directly onto an appropriate cooling surface or onto a heat sink the continuous dissipation can be increased resp. the surface temperature can be lowered. Typical factors for an increase are 1,5 up to 5 , depending on type, ventilation and size of the cooling surface or heat sink.
We provide various mounting brackets as accessories for different mounting types; see page T350E for further information.

Option: temperature switch (..Q)

Both type series can be fitted with a $180^{\circ} \mathrm{C}$ temperature switch for monitoring which is connected to 2 terminals.

Type designation would be: GXHMQ ... or GXUMQ..

Application

e.g. as braking resistors for servo- or frequency converters. Due to optional screened wiring and to space saving construction form protection against access to hazardous parts is ensured also at limited mounting spaces.

Special design

- Resistor with degree of protection IP 54 (GW...)

$100-750 \mathrm{~W}$, up to IP 40 in aluminium enclosure, connection at terminals

Short-circuit proof wirewound flat resistor in blue anodized aluminium enclosure. Prepared to connect screened cable on porcelain terminal. Design with strain relief and ground connection.
GXHM.. for integration into switch cabinet
Resistor with degree of protection IP 40, terminals protected against access according to BGV A2
GXUM.. for mounting outside the switch cabinet
Design as GXHM but terminals in terminal box, degree of protection IP 20
${ }^{(3)}$ optionally, type designation would be GXHM(Q)U..,
e.g. GXHMQU 420x80-33 (version with terminals G10/G5)

Electrical and mechanical data

type series	continuous dissipation in W at $40^{\circ} \mathrm{C}, 100 \% \mathrm{DCF}$ and surface excess temperature of		production range Ω-value		dimensions in mm			weight ing
GX. M. 110×80	100	150	2,7	3,3k	110	98	185	300
GX. M. 160×80	150	225	4,7	5,6k	160	148	255	420
GX. M. 216×80	200	300	6,8	8,2k	216	204	291	550
GX. M. 320×80	300	450	10,0	12 k	320	2x154	395	850
GX. M. 420×80	400	600	12,0	18 k	420	2x204	495	1100
GX. M. 520×80	500	750	18,0	22 k	520	4×127	595	1350

NOTE: excess temperature values of 200 K should not be exceeded in order not to risk the degree of protection!

The given power rating values are valid for 100% CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF). (Also see pages T306E and T307E).

DCF	60%	40%	25%	15%	6%	3%	1%
OLF	1,5	2,2	3,0	4,2	8,2	13	22

These overload factors are valid for a total cycle time of maximum 120 s

Type series FDWZ.. / FYWZ..

Technologies

- compact construction form
- short-circuit proof
- self-extinguishing
- degree of protection IP 54 or IP 65
- incl. terminals in terminal box

All connections are wired to G10 terminals in the mounted terminal box. A M25 cable gland can be used for cable inlet and strain relief.

Option: Temperature switch (..Q) (only for type series FDWZ.. - not for FYWZ..)

This type series can be fitted with a $180^{\circ} \mathrm{C}$ temperature switch for monitoring, which is wired on two terminals in the terminal box.

Type designation would be: FDWZQ...

Application

E.g. as brake resistor for servo- or frequency converters. Due to the terminals in the terminal box various connection conditions and a high degree of protection can be realized at the same time. Thus the resistors also can be mounted outside of switch cabinets at various environment conditions.

Special design

- optionally with connection cable, screened or unscreened
- optionally for 1100 V DC
$225-2520$ W, IP 54 or IP65, in aluminium enclosure, with terminals and terminal box

Short-circuit proof wirewound flat resistor in single, double or triple configuration. Degree of protection IP 54 or IP 65 in blue anodized aluminium enclosure. Design with terminals and strain relief by cable inlet in terminal box.

Version with protection degree IP 54 - type FDWZ.. (standard version)
Version with protection degree IP 65 - type FYWZ..

Electrical and mechanical data

Type series	continuous dissipation in W at $40^{\circ} \mathrm{C}$, 100\%DCF and surface excess temperature of 200 K	$\begin{array}{r} \text { prod } \\ \text { ra } \\ \Omega-1 \\ \\ \text { from } \end{array}$	ction ge lue tp to	A	dim	C	ns in	mm	F	weight in kg
F.WZ.51201..	225	4,7	5,6k	245	100	34	90	110	90	1,9
F.WZ.51301..	300	6,8	8,2k	301	100	34	146	110	90	2,3
F.WZ.51401..	450	10,0	12 k	405	100	34	250	110	90	2,9
F.WZ.51501..	600	12,0	18 k	505	100	74	270	110	90	3,5
F.WZ.51601..	750	18,0	22 k	605	100	74	370	110	90	4,1
F.WZ.51701..	900	22,0	27 k	705	100	74	470	110	90	4,8
F.WZ.51801..	1050	33,0	33 k	805	100	74	570	110	90	5,4
F.WZ.51202..	360	4,7	5,6k	245	160	34	90	190	170	3,3
F.WZ.51302..	480	6,8	8,2k	301	160	34	146	190	170	4,0
F.WZ.51402..	720	10,0	12 k	405	160	34	250	190	170	5,2
F.WZ.51502..	960	12,0	18 k	505	160	74	270	190	170	6,5
F.WZ.51602..	1200	18,0	22 k	605	160	74	370	190	170	7,7
F.WZ.51702..	1440	22,0	27 k	705	160	74	470	190	170	9,0
F.WZ.51802..	1680	33,0	33 k	805	160	74	570	190	170	10,2
F.WZ.51203..	540	4,7	5,6k	245	200	34	90	270	250	4,7
F.WZ.51303..	720	6,8	8,2k	301	200	34	146	270	250	5,7
F.WZ.51403..	1080	10,0	12 k	405	200	34	250	270	250	7,7
F.WZ.51503..	1440	12,0	18 k	505	200	74	270	270	250	9,6
F.WZ.51603..	1800	18,0	22 k	605	200	74	370	270	250	11,4
F.WZ.51703..	2160	22,0	27 k	705	200	74	470	270	250	13,3
F.WZ.51803..	2520	33,0	33 k	805	200	74	570	270	250	15,2

Type series FDAZ.. / FYAZ..

Technologies

- compact construction form
- short-circuit proof
- self-extinguishing
- degree of protection IP 54 or IP 65
- incl. terminals in terminal box

All connections run on ST terminals in the mounted terminal box. Cable gland M25 (up to $2,4 \mathrm{~kW}$ cont.diss.) or M32 can be used for cable inlet and strain relief.

Option: Temperature switch (..Q) (only for type series FDAZ.. - not for FYAZ..)

This type series can be fitted with a $180^{\circ} \mathrm{C}$ temperature switch for monitoring (incl. M12 or M20 cable gland), which is wired on two terminals in the terminal box.

Type designation would be: FDAZQ...

Application

E.g. as brake resistor for servo- or frequency converters. Due to the terminals in the terminal box various connection conditions and a high degree of protection can be realized at the same time. Thus the resistors also can be mounted outside of switch cabinets at various environment conditions.

Special design

- optionally with connection cable, screened or unscreened
- optionally up to 1100 V DC

160 - 4800 W, IP 54 or IP65, in aluminium enclosure, with terminals and terminal box

848 V
DC

IP
65

Short-circuit proof wirewound flat resistor in multiple configuration. Degree of protection IP 54 or IP 65 in blue anodized aluminium enclosure. Design with terminals and strain relief provision in terminal box.

Version with protection degree IP 54 - type FDAZ.. (standard version) Version with protection degree IP 65 - type FYAZ..

Electrical and mechanical data

Type series$\begin{aligned} & \text { FDAZ - IP54 } \\ & \text { FYAZ - IP65 } \end{aligned}$	continuous dissipation in W at $40^{\circ} \mathrm{C}$, 100\%DCF and surface excess temperature of 200 K	production range Ω-value		dimensions in mm						weight in kg
		from	up to	L	H	M	0	R	U	
F.AZ.52102..	160	1,5	8,2 k	211	120	226	290	92	64	2,3
F.AZ.52202..	240	2,7	5,6 k	261	120	276	340	92	64	2,6
F.AZ.52302..	320	3,9	3,9 k	311	120	326	390	92	64	2,9
F.AZ.52502..	640	6,8	2,2 k	511	120	526	590	92	64	3,8
F.AZ.52602..	800	10,0	1,8 k	611	120	626	690	92	64	4,5
F.AZ.52204..	480	1,2	2,7 k	261	120	276	340	185	150	3,6
F.AZ.52304..	640	1,8	2,2 k	311	120	326	390	185	150	4,2
F.AZ.52504..	1280	3,3	1,0 k	511	120	526	590	185	150	6,7
F.AZ.52604..	1600	4,7	820	611	120	626	690	185	150	7,9
F.AZ.52506..	1920	2,2	680	511	120	526	610	275	240	9,2
F.AZ.52606..	2400	3,3	560	611	120	626	710	275	240	10,9
F.AZ.52508..	2560	1,5	560	511	210	526	610	185	150	11,6
F.AZ.52608..	3200	2,2	390	611	210	626	710	185	150	13,9
F.AZ.52512..	3840	1,2	330	511	210	526	610	266	240	16,2
F.AZ.52612..	4800	1,5	270	611	210	626	710	266	240	19,5

Type series WPAZQ..

Technologies

- very compact design
- high degree of protection IP 54
- very low excess of surface temperature (<40K)
- designed for water cooling by industrial water and almost any standard cooling liquid (dirt particles $\leq 1 \mathrm{~mm}$)
- max. working pressure 4 bar (test pressure 10 bar)
- max. drop of pressure 0,5 bar
- with temperature switch

Construction

Power resistor:

Electrical connection at terminals 16-
$95 \mathrm{~mm}^{2}$ (depending on design) in terminal box incl. cable gland up to M50.

Cooling:
The integrated Cu-tubes are for industrial water and almost any standard cooling liquids or oils - not for aggressive liquids, sea water or demineralized water.
Water connection at $1 \frac{1}{4}$ inch thread for max. 3600 litre/hour. Maximum "InWater" $+30^{\circ} \mathrm{C}$, maximum "Out-Water" $+45^{\circ} \mathrm{C}$.

Application

An important application is the use as internal load resistor or as brake resistor. The big advantage is the excellent transport of heat by the integrated cooling water connection.

Special design

- Mounting and connection material out of stainless steel
- with additional PT100 element
- integrated into switch cabinet

10 - 40 kW, IP 54, water cooled, with terminals and terminal box

848 V
DC

IP
54

E

Wire wound flat type resistors in protection degree IP 54 in aluminium enclosure, combined with water cooler with integrated Cu-tubes. Electric wiring on terminals in attached terminal box. Cooling connection on two pipe connections $1 \frac{1}{4}$ inch (DIN ISO 228).

Electrical and mechanical data

type series	continuous dissipation in kW for cold "InWater" of $20^{\circ} \mathrm{C}$ at 100% ED and a max. surface excess temperature of 30 K	necessary flow of cooling liquid in litre / h at a "Out-Water" temperature rise of 12 K	prod ran $\Omega-\mathrm{V}$ from	ction ge alue up to	dime in A	ions m B	approx. weight in kg
WPAZQ90404	10	900	4,5	2,7 k	220	200	25
WPAZQ90604	15	1350	3,0	3,3 k	280	260	33
WPAZQ90804	20	1800	2,3	3,9 k	340	320	40
WPAZQ91004	25	2250	1,8	4,7k	400	380	48
WPAZQ91204	30	2700	1,5	5,6 k	460	440	55
WPAZQ91404	35	3150	1,3	6,8 k	520	500	63
WPAZQ91604	40	3600	1,2	8,2 k	580	560	70

The given power rating values are valid for 100% CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF).

DCF	60%	40%	25%	15%	6%
OLF	1,2	1,6	2,2	3,1	5,5

These overload factors are valid for a total cycle time of maximum 120 s

Accessories for type series G..D..x 80 and ..x 120 Type MWS3..

Mounting brackets sets - 2 types

We provide 2 different kinds of brackets as accessories, they consist of 2 brackets incl. mounting material in loose addition. A version with a mounted temperature switch is shown below (optional).
1.) Mounting variation A :
set of 2 brackets type MWS301L
(incl. Mounting material; 2 screws M4x6 and M4x20)

A1: vertically mounted at the long side

A3: horizontally mounted on surface (side view)

A2: hanging at the long side

G..D. 320×80.. $\quad \mathrm{L}=340 \mathrm{~mm}$
G..D. 420×80.. $\quad \mathrm{L}=440 \mathrm{~mm}$
G..D. 520×80.. $\quad \mathrm{L}=540 \mathrm{~mm}$
to A3:(plan view)

G..D. 320×80.. $\quad \mathrm{L}=308 \mathrm{~mm}$
G..D. 420×80.. $\quad \mathrm{L}=408 \mathrm{~mm}$
G..D. 520x80.. $\quad \mathrm{L}=508 \mathrm{~mm}$
2.) Mounting variation B :

B1: hanging at the short side

set of 2 brackets type MWS302L (incl. Mounting material; 2 screws M4x6)

B2: vertically mounted at the short side

Distance of holes L for
G..D. 110×80.. to G..D. 216×80..
$\mathrm{L}=98 \mathrm{~mm}$
$\mathrm{L}=138 \mathrm{~mm}$

Accessories for type series K..D..x 91
Mounting brackets sets - 4 types Type MWS3..

We provide 2 different kinds of brackets as accessories, they consist of 2 or 4 brackets incl. mounting material in loose addition. A version with a mounted temperature switch is shown below (optional).
1.) Mounting variation A :
set of 2 brackets Type MWS302L (incl. mounting material; 2 screws M4x6)

A1: mounted on short side - hanging

Mounting plate distance $\mathrm{M}=30 \mathrm{~mm}$, distance of holes $\mathrm{L}=101 \mathrm{~mm}$

A2: mounted on long side - hanging

$$
\begin{array}{ll}
\text { K...D. } 216 \times 91 . . & A=246 \mathrm{~mm} \\
\text { K..D. } 320 \times 92 . . & A=350 \mathrm{~mm}
\end{array}
$$

2.) Mounting variation B :

B1: mounted on short side - hanging
set of 4 brackets Type MWS305L (incl. mounting material; 4 screws M4x6)

Mounting plate distance $\mathrm{M}=30 \mathrm{~mm}$, distance of holes $\mathrm{L}=101 \mathrm{~mm}$

Complete length A with resistor at K..D. 110×91.. $\quad A=140 \mathrm{~mm}$
K..D. 160x91.. $\quad A=190 \mathrm{~mm}$

B2: mounted on long side - hanging

$\begin{array}{ll}\text { K..D. } 216 \times 91 . . & A=246 \mathrm{~mm} \\ \text { K..D. } 320 \times 91 . . & A=350 \mathrm{~mm}\end{array}$
3.) Mounting variation C :

C1: horizontally mounted on surface

Distance of holes L for

$\begin{array}{ll}\text { K..D. } 110 \times 91 . . & \mathrm{L}=128 \mathrm{~mm} \\ \text { K..D. } 160 \times 91 . . & \mathrm{L}=178 \mathrm{~mm}\end{array}$
set of 2 brackets Type MWS301L
(incl. mounting material; 2 screws M4x6 and 2 screws M4×20)

C2: vertically mounted - hanging

K..D. $216 \times 91 . . \quad \mathrm{L}=234 \mathrm{~mm}$
K..D. $320 \times 91 . . \quad \mathrm{L}=338 \mathrm{~mm}$
4.) Mounting variation D :

D1: horizontally mounted on surface

K..D. 110x91.. $\quad \mathrm{L}=128 \mathrm{~mm}$
$\mathrm{L}=178 \mathrm{~mm}$
$\mathrm{L}=234 \mathrm{~mm}$
$\mathrm{L}=338 \mathrm{~mm}$

D2: vertically mounted - hanging

K..D. 420x91.. $\quad \mathrm{L}=438 \mathrm{~mm}$
K..D. 520×91.. $\quad \mathrm{L}=538 \mathrm{~mm}$
K..D. 620x91.. $\quad \mathrm{L}=638 \mathrm{~mm}$
K..D. 720×91.. $\quad \mathrm{L}=738 \mathrm{~mm}$

More details about the distance of holes please look at our dimension sheet 13 M 0559.

Further type series as examples of customized solutions

1. Resistor wired on terminals, also in compact multiple design for high short time energy absorption

Type series FBEMS..

- construction very compact
- for horizontal mounting
- connection at terminals
- with ground connection
- degree of protection IP 20 (resistors IP 54)

Type series FBEM..

- construction very compact
- for vertical mounting
- connection at terminals
- with ground connection
- degree of protection IP 20 (resistors IP 54)

2. In multiple design for higher continuous dissipation

Type series GZDWM..

- mica flat resistor elements
- connection on terminals
- with cover
- with ground connection
- built-up with elements which have UL Recognition

Type series FFAE..

- flat type construction
- mounting on switch cabinet
- with grounded and screened wiring
- degree of protection IP 21 (resistors IP 54)

3. Special design for mounting beyond and beside servo- and frequency converter

Type series GUXD..

- connection by wires
- for mounting beyond and beside converters
- scalable design
- degree of protection IP 40

Type series GXWD..

- connection by wires
- for mounting beyond and beside converters
- optionally with ground and screen connection
- degree of protection IP 54

Type series GXWD..

Type series GXWD..

- construction form very compact
- for vertically mounting
- connection by wires
- with ground connection
- degree of protection IP 54

- construction form very compact
- customer integration direct at the motor
- connection by wires
- with ground connection
- degree of protection IP 54

4. Version with water-cooling and forced ventilation

Type series WPAD..

- water cooling
- lower temperature at surface
- connection direct at cooling system
- connection by wires
- degree of protection IP 54/67

Type series FDVEQ..

- forced ventilation
- flat resistor with UL-Recognition
- mounting in the switch cabinet
- with grounded and screened wiring
- degree of protection IP 20 (resistors IP 54)

t 400 - DIE BELASTBAREN / THE LOADABLE ONES

Last- und Prüfwiderstände

0,01 bis 250 Kilowatt

Stationäre oder mobile Stellwiderstandsgeräte für Labor oder Versuchsfeld. Individuelle Auslegung je nach Leistung und Anforderungen der Last in Stufen oder fein einstellbar.
Einsatzbereiche in Schulen und Universitäten, im Bereich Forschung und Entwicklung. Für den Einsatz in der industriellen Nutzung in unterschiedlichen Schutzarten lieferbar.

■ Ein- und dreiphasige Ausführungen
$■$ Stufenlose bzw. stufige Einstellung des Widerstandswertes
■ Auch für mobilen Einsatz
■ Gehäuse verzinkt, lackiert bzw. aus Aluminium in Laborausführung

Load and test resistors

0,01 up to 250 Kilowatt

Stationary or mobile loads for laboratory or test sites. Individually designed according to the requirements of power and the type of load, which can be fine adjustable or switched in steps.
For example at schools or universities, in research and development or as well as in different degrees of protection for industrial needs.

- One- or threephase design
\square Resistance value fine adjustable or switched in steps
- For mobile use

■ Enclosure made from hot-galvanised sheet steel, varnished, respectively out of aluminium in laboratory design

Contents This list describes load and test resistors for laboratory environment, test rooms and industrial environment with different protection degrees. These resistor types are series resistor usable for different applications like voltage divider or as load resistor. The load and test resistors consist of different resistor elements out of our type series T100 to T600.

maximum power	characteristics	type series	page
	survey		T402E
	technical details		T403E
Laboratory resistors, fixed and adjustable			
3,0 kW	fixed resistors	FZ.L	T410E
1,4 kW	slide resistors	SZ.L	T411E
3,8 kW	slide resistors, with spindle drive	SZ.PL	T412E
0,25 kW	potentiometers	RGL	T413E
1,0 kW	slide resistors, with stop, stepped winding	SU..L/SZ..L	T414E
Laboratory resistors, switchable and adjustable			
5,6 kW	Adjustable, $14 / 28 \mathrm{~V}$, laboratory version	BW 18 - BW 81	T420E
50 kW	Adjustable, $230 / 400 \mathrm{~V}$, laboratory version	BW 20 - BWV 83	T421E
Resistors in low weight design, switchable with steps			
100 kW	switchable with steps, mobile version	BWMV37...	T422E
Resistors in industrial version, fixed and switchable with steps			
60 kW	steelgrid resistors with natural cooling	FA 3.. / FS 3..	T430E
250 kW	steelgrid resistors with fan	FAV 3.. / FSV 3..	T431E
250 kW	steelgrid resistors with switch cabinet	FAVR3../ FSVR3..	T432E
Further series T433E			

Properties

Applications

- low temperature coefficient for laboratory version and test area
\Rightarrow constant ohmic value over a large temperature range
- high powers adjustable
\Rightarrow in steps by means of switches or contactors, or without steps by means of slider and spindle
- one- and three-phase versions
\Rightarrow Application for different power supplies, also for different voltages
- enclosure made of hot galvanised steel sheet; type BWMV aluminium chassis
\Rightarrow Laboratory version with additional varnishing
- very robust construction
\Rightarrow different protection degrees and installation possibilities, also mobile
- special varnishing
\Rightarrow optionally and with additional charge, colour selection by availability
- control of the load steps
\Rightarrow by electric contactors or switches placed in an attached switch cabinet for the type FAVR/FSVR or by internal switches for type BW and BWMV
- regulating resistors in laboratory or test field, stationary or mobile
- load resistors for batteries, battery chargers, UPS-units, generators, emergency power units
- load resistors up to protection degree IP 23, usable for outdoor location
- resistors for experimenting and testing in laboratories, schools and universities

T 400-survey

		FZ.L	SZ.L	SZ.PL	RGL	$\begin{gathered} \hline \text { SU.L } \\ -\overline{S Z . L} \end{gathered}$	$\begin{gathered} \hline \text { BW18 } \\ -\quad \\ \text { BW81 } \end{gathered}$	$\begin{gathered} \hline \text { BW18 } \\ -\quad \\ \text { BWW } \\ 83 \end{gathered}$	$\begin{gathered} \hline \text { BWNV } \\ 37 . . \end{gathered}$	$\begin{aligned} & \hline \text { FA./ } \\ & \text { FS. } \\ & 3 . . . \end{aligned}$	$\begin{aligned} & \text { F.V } \\ & 3 . . . \end{aligned}$	$\begin{gathered} \hline \text { F.VR. } \\ 3 \ldots . \end{gathered}$
		T410E	T411E	T412E	T413E	T414E	T420E	T421E	T422E	T430E	T431E	T432E
typical power from [kW]		0,065	0,105	1,18	0,008	0,1	1,2	1,2	5	5	70	70
typical power up to [kW]		3	1,4	3,8	0,25	1,0	5,6	50	100	60	250	250
max. terminal connections		2	3	3	3	2	3	6	6	40	40	40
protection degree IP20	$\begin{aligned} & \hline \text { IP } \\ & 20 \end{aligned}$	X	X	X	X	X	X	X	X	X	X	X
protection degree IP23	23									X	X	X
horizontal mounting	洴蕅									X	X	X
temperature switch (optional)	${ }^{9}$								X	X	X	X
forced ventilation								X	X		X	X
transportable	$\xrightarrow{\square}$								X			
adjustable in steps	\checkmark						X	X	X			X
fine adjustment device	$-y^{x}$		X	X	X	X	X	X				
laboratory version		X	X	X	X	X	X	X				

Rights for improvements and modifications of our products reserved. Modifications, errors and misprints justify no claim for damages. We refer to our terms of sales and delivery.

Technical details

Construction

Resistance values/ Production tolerance/ Temperature dependency

Air- and creepage

 distances
Protective measures

Terminal details

Starting up

This list includes resistors, which are derived from the type series T100 wirewound tubular fixed resistors, T200 cemented wirewound variable resistors, T500 lamina type fixed resistors and T600 steel-grid fixed resistors. More technical details are described in the lists of these resistor types.

The resistance values in the column "production range" refer to our standard production programm. The normal tolerance is $\pm 10 \%$.
The resistance value of the wirewound laboratory resistors is changing only slightly. The resistance will change between cold and warm condition: wiring made of CuNi 44 approx. $\pm 1 \%$ and made of CrAl 255 approx. +1\%.
The resistance value for the resistors in industry version with steel-grid resistor elements, increases approx. $+15 \%$ between cold and operating temperature. This is considered in the calculation for our load resistors, so that the rated power will be achieved at operating temperature.

Air and creepage distances are rated according to IEC 664 (DIN EN 0110 part 1) for the overvoltage category III and degree of pollution 3 for grounded three-phase mains supplies up to $3 \times 500 \mathrm{~V}$. Testing voltage 2.5 kV AC .

These data are valid for all devices that are connected to mains voltage and derived voltages, as for example the intermediate circuit voltage of frequency converters. Do not conclude from the calculated relation between the rated power and the maximum producible ohmic value to the rated voltage!

All our power resistors with degree of protection IP 20 and IP 23, correspond to safety class I, i.e. connections for protective earth conductor according to EN 61140 are provided.

These devices also comply with the CE low voltage directive.
Power resistors being passive electronical or electrical units are not affected by the specific EMC standards. They do not produce any interfering radiations nor are they affected.

The choice of the terminals and the wire cross-section is chosen according to the rated current. The electrical connections are made of with flexible, heat resistant, silicone-insulated wire.
We use safety sockets or binding posts with flat clamp for the connections of our BW.. series load resistors.

The maximum rated voltage is 500 V AC or DC for wirewound variable and slide resistors. Please be aware not to exceed the rated current of slide resistors.

The maximum voltage is given on the name plate for load resistors. A higher voltage is not allowed, because the resistor will be overloaded and destroyed. You can check this with $\mathrm{P}=\mathrm{U}^{2} / \mathrm{R}$.

Resistors in industry version.
On first operation during commissioning, the steelgrid resistors will produce some smoke. This is due to the lubricant used in the manufacturing process of the resistor element.

Basic wirings and applications of adjustable resistors

series resistor

Voltage divider wiring to adjust the voltage of an electrical load.
Principally it is possible to realize a voltage divider wiring with an adjustable resistor, when the resistor has three terminals. Resistor begin 1 and resistor end 2 of the voltage divider resistor R_{1} are connected to the power supply U_{N}. The consumer or test object R_{2} lies via connection 3 at the variable slider S . By adjusting the slider you can adjust the voltage of the electrical load between 0 and $100 \% \mathrm{U}_{\mathrm{N}}$.
Is the electrical consumer or test object R_{2} self variable with changing current consumption, for example a DC - motor with different load, so it reduces principally the applied voltage at the slider S with increasing load current I_{2}, the speed of the motor falls. Should this voltage decrease be held very low, the flowing current I_{1} through voltage divider resistor should be a multiple of the current $I_{2}\left(I_{1} / I_{2}=5\right.$ up to 10), the same is valid for the power of the voltage divider resistor. By economic purpose you should take this application only for small electrical consumers up to 100 W with $\mathrm{U}_{\mathrm{N}}=24 \mathrm{~V}$ or up to 300 W with $\mathrm{U}_{\mathrm{N}}=230 \mathrm{~V}$ and should be limited for special cases
For this wiring you can take cemented wirewound variable resistors with enclosure of the type series RGL (page T413E) or cemented wirewound tubular fixed resistors of the type series SZL (page T411E) or SZ.PL (page T412E).

Series resistor to adjust the current of an electrical load.
Should the current of an electrical load or test object be adjusted with a constant voltage, you have to use the series resistor wiring. You need only the connection 1 (resistor begin) and connection 3 (slider). Resistor and electrical load are wired in series. The current of the series resistor and the electrical load is the same, the current is the highest in position 1 , the lowest in position 2 , if the series resistor is fully efficient.
The series resistor wiring is used for example to adjust the field current of DC motors and DC-current- or synchronous generators, the exciting current of magnetic- or eddy current brakes, the premagnetisation current of ripple filter chokes to adjust the ripple of current of an arc welder.
To dimension a series resistor, the following data are needed, shown for example for a field rheostat of a small synchronous generator: Rated voltage U_{N} (here $110 \mathrm{~V} D$); rated resistor R_{2} of the electrical load (here cold resistor value of the exciter field 40 ohm)

Maximum current of the load:

$$
I_{\text {max. }}=\frac{U_{N}}{R_{\text {max. }}}=\frac{110 \mathrm{~V}}{40 \Omega}=2,75 \mathrm{~A}
$$

Desired minimal current $I_{\text {min }}\left(\right.$ here $I_{\text {min }}=2 A$).
This gives a current rate $I_{\text {max }} / I_{\text {min }}$ (here: $2,75 \mathrm{~A} / 2 \mathrm{~A}=1,375$).
Now you can calculate the necessary resistance value of the series resistor R1 corresponding to the wiring in series of the two resistors R1 and R2.

Here:

$$
R_{1}=\frac{U_{N}}{I_{\min .}}-R_{2}=\frac{110 \mathrm{~V}}{2 \mathrm{~A}}-40 \Omega=55 \Omega-40 \Omega=15 \Omega
$$

The minimum power of the series resistor will be calculated according to:

$$
P=I^{2}{ }_{\max } * R_{1}=(2,75 A)^{2} * 15 \Omega=113 W
$$

The series resistor can be realized, when it must be operationally adjusted, as a cement coated wirewound variable resistor with enclosure corresponding to our type RGL (page T413E) or as a cement coated wirewound slide resistor corresponding to our type SZL (page T411E) or SZ.PL (page T412E). You will have the following two solutions in this example: A cement coated wirewound variable resistor type RGL 250-15 with a typical power of 150 W or a cemented wirewound slide resistor as our type SZL $200 \times 45-15$ with a typical power of 135 W .
load resistor
wiring example BW18 - BWV83

F - fine adjustment, potentiometer or slide resistor G - rough adjustment, cam switch

If the adjusting range of current between $I_{\max }$ and $I_{\text {min }}$ should be higher than the factor 1,5 , it can be favourable to use a stepped winding, which is adapted to the flow of the current. You will receive a reduced resistor size then.
This can be realized either for wire wound variable resistors with a stepped winding made of a blank wire (then type RGL..A) or for slide resistors with a stepped winding made of an isolated-oxidized resistance wire (then type series SU.L..x..G or. SU.PL...x...G).

We need for the calculation of the resistor size the above mentioned data. Remark: If it is not necessary for the application to adjust the current operationally and permanently, but only one time for the start-up procedure or occasionally for changes in the facility, it could be more economical to use a tubular fixed resistor of our list T100, which is adjustable with an adjustable clip instead of the operationally adjustable resistor, which are described here.

Load resistor wiring to adjust the continuous dissipation.
Adjustable resistors are mostly used as load resistors for one- or three phase supply units. In development, laboratories are tested power supply and charging units, rectifiers, inverters or Ups - units, in hospitals emergency power batteries or emergency power units must be checked continuously according to their function. So there are various requirements, for which you need different solutions. To make the selection easier for our customer, we offer in our lists resistors with our long-time experience, with which we can achieve most of the customer applications. You find typically load resistors up to 1 kW on page T414E. These are our slide-resistors built with 2 terminals and a linear or stepped winding. These resistors have 2 winding parts, the so-called fixed resistor part R_{F}, which is responsible for the maximum power and which can not be reduced and the effective slide resistor part Rs. For protection of the fixed resistor part we can deliver a mechanical stop.

Concerning the load resistors of our type series BW 18 - BWV 83 on page T420E and T421E from $1,2 \mathrm{~kW}$ up to 50 kW there are connected multiple resistor steps in parallel to receive a higher continuous dissipation.

If there is no solution for a special application with our listed resistors, we need (for the dimensioning of your special load resistor) the following detail:

- rated voltage U_{N}, one- or three phase, DC or AC
- maximum power $P_{\max }$ respectively maximum current $I_{\max }$
- minimum power $P_{\text {min }}$ respectively minimum current $I_{\text {min }}$

Remark to the voltage and power rating :
 Operators often need loads for different rated voltages and currents, e.g. from 14 V DC up to 230 V AC or $3 \times 400 \mathrm{~V}$ AC for currents from 1 A up to 10 A and they want normally to use one single load resistor. But this is not possible mostly because of technical and economical reasons.

The dimensioning of a load resistor is normally made for a rated voltage U_{N}, which corresponds to the maximum voltage. Hereby the maximum continuous dissipation $P_{\max }$ is calculated.

Of course this load resistor can be used with smaller voltages U_{x}, but then you will receive a smaller continuous dissipation P_{x}.

$$
P x=\left(\frac{U x}{U_{N}}\right)^{2} * P \max =\left(\frac{24 \mathrm{~V}}{28 \mathrm{~V}}\right)^{2 *}+1,2 \mathrm{~kW}
$$

E.g. for a load resistor with a rated voltage of 28 V DC, which is used with 24 V DC , then the continuous dissipation is reduced P_{x} to 73%.

To increase the economic efficiency and the customer`s benefit we have engineered two wiring solutions, which are permitted for 2 voltages while retaining the full continuous dissipation. On the one hand these are load resistors for 2 voltages, which are in relation 1:2. You will find different types on page T420E, for examples.

On the other hand we can build our threephase load resistors according to our page T421E with 6 terminals. Thereby you can use it with the complete continuous dissipation either for $3 \times 400 \mathrm{VAC}$ in star wiring or for $3 \times 230 \mathrm{VAC}$ in delta wiring or additional for 230 V AC in parallel wiring.

Remark to the usage of a rheostat in slide- or cement coated wirewound variable version as load resistor, which does not protect the series resistor with a mechanical stop: Basically you can use each rheostat as load resistor. The operator must be careful, that the rated current, which is given also on the name plate, will not be exceeded and especially the resistor will not be shortcircuited, because the load resistor will be destroyed then.

Type series FZL / FZZL / FZDL

Technologies

- 2 safety sockets 4 mm
- 1 earthing safety socket 4 mm
- completely closed enclosure
- rubber feet for location on tables

The safety sockets form a secure 4 mm plug system together with the adjusted safety plugs, which are protected by rigid insulation coverings. So you cannot touch any blank energised parts. The use of conventional 4 mm plugs is possible; we do not provide a lug connection.

Application

These resistors are suitable for educational modelling and experimenting applications, for load testing in laboratories, schools and universities as well as for manufacturing. Engineering consultants and development divisions use these handy devices.

Special design

- individual varnish on request
- with micro-fuse
fixed resistors in laboratory design $65-3000$ W

Cemented wirewound tubular fixed resistor in one-, two- or three-tube design, in laboratory version, enclosure with aluminium coloured varnish and rubber feet. Degree of protection IP 20.

Electrical and mechanical data

Type series	$\begin{gathered} \text { typical } \\ \text { power in } \\ \mathrm{W} \text { at } \\ 40^{\circ} \mathrm{C} \\ 100 \% \\ \text { DCF } \end{gathered}$		tion	dimension in mm			approx. weight in kg
FZL 100x35	65	0,22	22k	82	137	66	0,5
FZL 200x35	150	0,56	47k	82	237	66	0,7
FZL 160x45	150	0,47	33k	92	206	75	0,7
FZL 200x45	180	0,68	39k	92	246	75	0,8
FZL 300x45	300	1,2	56k	92	346	75	1,1
FZL 300x65	430	6,8	47k	125	346	92	1,8
FZL 400x65	600	10	68k	125	446	92	2,3
FZZL 300x65	860	3,9	82k	125	346	185	3,6
FZZL 400x65	1200	5,6	120k	125	446	185	4,4
FZZL 500x65	1600	6,8	150k	125	546	185	5,4
FZZL 600x65	2000	8,2	180k	125	646	185	6,4
FZDL 500x65	2400	3,9	150k	125	546	275	7,8
FZDL 600x65	3000	5,6	180k	125	646	275	9,2

Type series SZL / SUL Type series SZZL / SUZL

Technologies

- 3 safety sockets 4 mm
- 1 earthing safety socket 4 mm
- completely closed enclosure
- rubber feet for location on tables
- load capacity up to 15 A

The safety sockets form a secure 4 mm plug system together with the adjusted safety plugs, which are protected by rigid insulation coverings. So you cannot touch any blank energised parts. The use of conventional 4 mm plugs is possible; we do not provide a lug connection.
The resistance value can be adjusted between zero and the requested maximum resistance value by a slider.
Attention: There is danger of burning, because the slider is possibly in the heat sector.
We also equip with a spindle drive, which is charged additionally. (only $\mathrm{D}=65+85$). The adjustment is accomplished sensitively by turning a handwheel.
The adjustable slide resistor can be used as voltage divider with three sockets as well as series resistor with two sockets. When optionally equipped with micro-fuse only wiring as series resistor is possible (2 sockets).
If you use an adjustable slide resistor as load resistor we suggest a stepped winding adapted to the flow of the current.
Even more so if the adjusting range of current is higher than 1:1,5. The resistance wire will be oxidized and is therefore insulating. You will get a reduced resistor size.
\Rightarrow type SU.L .. X .. G
(Compare technical indications for dimensioning on page T414E)

Special design

- individual varnish on request
- with micro-fuse
adjustable slide resistors $105-1400 \mathrm{~W}$, up to max. 15 A

SZ.L .. Cemented one-tube(SZL..)- or two-tube (SZZL..) adjustable slide resistors with manual operation (standard version)
SU.L .. Uncemented one-tube (SUL..)- or two-tube (SUZL..)- adjustable slide resistors with manual operation (special version)
in laboratory version, enclosure with aluminium coloured varnish and rubber feet, degree of protection IP 20.

Elektrische und mechanische Daten

Type series$L \times D$	typical power in W at a surface temperature of		production range Ω-value		dimensions in mm					approx. weight in kg
	$250^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	von	bis	H	$\begin{gathered} \text { nur } \\ \mathrm{S} . \mathrm{PL} \end{gathered}$	L	O	R	
SZL 160x45	105	150	0,47	1,2 k	123	153	160	206	75	1,2
SZL 200x45	135	180	0,56	1,8 k	123	153	200	246	75	1,5
SZL 300x45	210	285	1,0	2,7 k	123	153	300	346	75	1,8
SZ.L 300x65	320	430	1,5	$3,9 \mathrm{k}$	156	186	300	346	92	2,5
SZ.L 400x65	440	600	1,8	5,6 k	156	186	400	446	92	3,2
SZ.L 400x85	610	850	2,7	6,8 k	181	211	400	450	120	4,2
SZZ.L 300x65	620	860	2,7	1,8 k	156	186	300	346	185	4,5
SZZ.L 400x65	870	1200	3,9	2,7 k	156	186	400	446	185	5,5
SZZ.L 500x65	1120	1600	5,6	3,3 k	156	186	500	546	185	6,5
SZZ.L 600x65	1400	2000	6,8	4,7 k	156	186	600	646	185	7,5

At continuous dissipation we advise to select from the table surface temperature $250^{\circ} \mathrm{C}$.

SZ.L / SU.L .. with manual operation
SZL/SUL SZZL/SUZL

11 M 0200

SZ.PL / SU.PL .. with spindle drive
SZPL / SUPL SZZPL / SUZPL

11 M 0201

Type series SZZPL / SUZPL Type series SZDPL / SUDPL

Technologies

- with spindle drive
- 3 safety sockets 4 mm
- 1 earthing safety socket 4 mm
- completely closed enclosure
- rubber feet for location on tables
- load capacity up to 30 A (one-phase version)

The safety sockets form a secure 4 mm plug system together with the adjusted safety plugs, which are protected by rigid insulation coverings. So you cannot touch any blank energised parts. The use of conventional 4 mm plugs is possible; we do not provide a lug connection.

The resistance value can be adjusted between zero and the requested maximum resistance value. The adjustment is accomplished sensitively by turning a handwheel. The advantage of the spindle drive is, that there is no danger of burning, because the operating is outside the heat sector.
The adjustable slide resistor can be used as voltage divider with three sockets as well as series resistor with two sockets. When optionally equipped with micro-fuse only wirings of series resistor is possible (2 sockets).

If you use an adjustable slide resistor as load resistor we suggest a stepped wiring adapted to the flow of the current. Even more so if the adjusting range of current is higher than $1: 1,5$. The resistance wire will be oxidized and is therefore insulating. You will get a reduced resistor size
\Rightarrow Type SU.PL .. x .. G, see page 414E

Special design

- individual varnish on request
- with micro-fuse
- three-phase version (only type series S.DPL)

adjustable slide resistors $1180-3800 \mathrm{~W}$, up to max. 30 A

SZ.PL .. Cemented two-tube (SZZPL..)- or three-tube (SZDPL..) adjustable slide resistors with spindle drive (standard version)
SU.PL .. Uncemented two-tube (SUZPL..)- or three-tube (SUDPL..) adjustable slide resistors with spindle drive (special version)
in laboratory version, enclosure with aluminium coloured varnish and rubber feet, degree of protection IP 20.

Electrical and mechanical data

Type series$L \times D$	typical power in W at a surface temperature of		production range Ω-value		dimensions in mm				weight in kg
	$250^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	von	bis	H	L	O	R	
SZZPL 400x85	1180	1700	1,2	3,3k	235	400	444	230	8,5
SZZPL 600x85	1880	2700	1,8	4,7k	235	600	644	230	11,5
SZZPL 800x85	2520	3700	2,7	6,8k	235	800	844	230	14,5
SZDPL 600x85	2800	4000	2,7	3,3k	235	600	644	340	15,0
SZDPL 800x85	3800	5500	3,9	4,7k	235	800	844	340	23,0

At continuous dissipation we advise to select from the table surface temperature $250^{\circ} \mathrm{C}$.

Type SU..L I SU.PL:
For the exact dimensioning of a load resistor we need the following details: (calculation examples pls. look on page T414E)

- maximum voltage value of the supply unit which is to be loaded.
- maximum current at this voltage
- minimum current to be adjusted at this voltage
- supply unit with one- or three-phase output

It is important to know, if the partial resistance, which results from maximum voltage and maximum current should be a separate fixed resistor, which is connected in series, or a part of the adjustable slide resistor. If so, we suggest to provide a mechanical stop to avoid overload or short circuit.

Example of dimensioning and selection of a specific unit:

adjustable slide resistors with spindle drive, 2800 W , resistance value 100Ω;

Type series RGL

Technologies

- continuous dissipation up to 250 W
- in laboratory version with knob and scale
- safety sockets 4 mm

The safety sockets form a secure 4 mm plug system together with the adjusted safety plugs, which are protected by rigid insulation coverings. So you cannot touch any blank energised parts. The use of conventional 4 mm plugs is possible; we do not provide a lug connection.

With the usage in lying position there is danger of burning, because the knob is in the heat sector.
The resistance value can be adjusted proportionally between zero and the wanted maximum resistance value by rotation.
The cement coated resistor can be used as voltage divider with three sockets as well as series resistor with two sockets. You have to pay attention to the maximum current of the resistor, depending on type, max. 9 A .
More details and technical description you will find in the chapter "Technical details" beginning with page T403E.

Application

- adjustable load resistors to use as voltage divider or series resistor
- resistors for experimenting and testing in laboratories, schools and universities

Special design

- stepped winding according to the flow of the current
- centre tap and zero position
- three phase version is possible
- enclosure in special varnish
cement coated wirewound resistor with enclosure, 8 W - 250 W

Cement coated wirewound resistor in laboratory design, with aluminium coloured varnish, degree of protection IP 20. With safety sockets and rubber feet for usage in standing and lying position.

Electrical and mechanical data

Type series	Typical power in W	production range $\Omega-$ value	test voltage in kV	dimensions in mm			weight in kg
RGL10	8	$1,5-10 \mathrm{k}$	2	124	100	128	0,59
RGL20	15	$2,2-15 \mathrm{k}$	2	124	100	128	0,62
RGL40	25	$3,9-27 \mathrm{k}$	2,5	124	100	132	0,69
RGL80	40	$1,0-33 \mathrm{k}$	2,5	124	100	132	0,8
RGL100	60	$1,2-39 \mathrm{k}$	2,5	124	100	136	1,2
RGL150	90	$1,5-47 \mathrm{k}$	2,5	124	100	136	1,3
RGL250	150	$1,8-47 \mathrm{k}$	2,5	175	100	144	2,6
RGL500	250	$3,3-10 \mathrm{k}$	2,5	240	110	167	4,8

Type series SU..L/SZ..L

Technologies

- different current rates possible
- continuous dissipation up to 1 kW
- in laboratory version as slideresistor, in one- or three phase version
- adjustable without steps
- safety sockets 4 mm

Adjustable load resistor for smaller continuous dissipation up to 1000 Watt. Built for a rated voltage and a winding, which is adapted to the flow of current. The winding is made of blank wire and in cemented version for smaller current rates up to about 1:2,5. Or wound with isolated - oxidized wire in different steps for higher current rates up to 1:10.
The winding is divided into an adjustable part R_{S} to reduce the current and power from the maximum to the minimum value and in a not adjustable part, the fixed resistor R_{F}, which is protected by a mechanical stop.

The current and the power can be adjusted between the maximum and the minimum value through a slider.
Attention: There is danger of burning, because the slider is possibly in the heat sector.
Alternative we can build it for an extra charge as a slide resistor with spindle drive.

Application

- adjustable load resistors
- resistors for experimenting and testing in laboratories, schools and universities

Special design

- designed for other rated voltages
- enclosure in special varnish
- with micro-fuse

Slide resistors in laboratory version, with aluminium coloured varnish, in protection degree IP 20. The winding is made of isolated-oxidized resistance wire or of blank wire and in cemented version. With mechanical stop, safety sockets and rubber feet.

Electrical and mechanical data

Type series	max. continuous dissipation in W	min. power inW	Current rates	current - rate from $\ldots \mathrm{A}$ up to $\ldots \mathrm{A}$	rated voltag e in V, AC	Mech- anical stop in ohm for partial- resistor
SZZL400x65-212	500	250	$1: 2$	$1,09-2,17$	230	106
SZZL500x65-265	500	215	$1: 2,5$	$0,9-2,17$	230	106
SUZL400x65G-320	500	165	$1: 3$	$0,72-2,17$	230	106
SUZL400x65G-530	500	100	$1: 5$	$0,43-2,17$	230	106
SUZL500x65G-1060	500	50	$1: 10$	$0,22-2,17$	230	106
SUZL500x65G-460	700	115	$1: 6$	$0,5-3,0$	230	77
SUZL600x65G-460	1000	115	$1: 9$	$0,5-4,5$	230	51
SUDL200x65G-3x4.0k	350	35	$1: 10$	$0,05-0.5$	3×400	3×460
SUDL400x65G-3x2.5k	620	65	$1: 10$	$0,09-0,9$	3×400	3×250
SUDL600x65G-3x3.0k	1000	55	$1: 19$	$0,075-1,4$	3×400	3×160

Type series	dimensions in mm							
	H	L	O	R	weight			
in kg						$	$	S.ZL400x65
:---								

see on page T411E, or on request

Example of dimensioning:
Requested data: - rated voltage, e.g. 230 V AC,

- maximum continuous dissipation, e.g. 500 W , therefore you get a maximum current of 2,17 A,
- rate of minimum current or power to maximum current or power, with e.g. 1:3; you get a minimum current of $0,72 \mathrm{~A}$, minimum power of 165 W Selection from above chart results in our type SUZL 400x65G - 320 with a resistance value of 320 ohm (mechanical stop at 106 ohm)

Type series BW 18 up to BW 81

Technologies

- compact construction form
- continuous dissipation up to $5,6 \mathrm{~kW}$
- for 14 V and 28 V , interchangeable
- BW 18 up to BW 20 for location on table with rubber feet
- BW 80 up to BW 81 for location on floor with 4 rollers
- gapless adjustment range of current and dissipation

The total power is divided into 6 or 10 equal steps, which are connected in parallel by a cam switch.
The current may be adjusted gaplessly (but not steplessly) by a power potentiometer or a slide resistor as a fine adjustment device in step 1 . This version with 3 terminals is suited for 14 V and/or 28V DC voltage.

The adjustment to the supply voltage is done by fitting an enclosed connection bridge between adequate terminals.

Supply voltages of e.g. 12 or 24 VDC can also be connected. Power or current are then reduced according to Ohm`s law. Please look at page T406E.

Application

- use in laboratory or experimental setup
- as load resistor for a monophase supply unit
- for testing or continuous loading of power packs or charging units
- for discharging of accumulators

Special design

- further power and voltage values on request
load resistor unit up to 5,6 kW, adjustable, for 14 V and 28 V DC voltage

Wirewound lamina type fixed resistor, degree of protection IP 20 in varnished steel sheet enclosure, in laboratory version with laboratory terminals, cam switch, fine adjustment device and rubber feet.

Electrical and mechanical data

Type series BW 18 up to BWW 83

Technologies

- compact construction form
- continuous dissipation up to 50 kW
- BW 18 up to BW 20 for location on table with rubber feet
- BW 80 up to BWV 83 for location on floor with 4 rollers
- gapless adjustment range of current and dissipation
- BWV 83 with forced ventilation, 230 V; 50 Hz ., with IEC power plug

The total power is divided into 6,10 or 20 equal steps, which are connected in parallel by a cam switch.
The current may be adjusted gaplessly (but not steplessly) by a power potentiometer or a slide resistor as a fine adjustment device in step 1.
The monophase version with 2 terminals is suited for 230 V AC or DC current. The three-phase version for three-phase current is wired in star and has 3 terminals. The star point is in the resistor. As an option with 6 terminals (star point at terminals, please look at page T406E).

Application

- use in laboratory or experimental setup
- as load resistor for mono- or threephase supply unit.
- for developing, testing or for continuous loading of power packs, uninterruptible power supply, alternators, generators and batteries.

Special design

- integrated amperemeter possible for BW 80-83
- micro fuse for protection
- further power and voltage values on request
load resistor unit up to 50 kW , adjustable, for DC-; AC- or three-phase voltage (230/400V)

Wirewound lamina type fixed resistor, degree of protection IP 20 in varnished steel sheet enclosure, in laboratory version with laboratory terminals, cam switch, fine adjustment device, mobile by 4 rollers (BW 80 up to BWV 83) for 230 V DC and AC current as well as for $3 \times 230 / 400 \mathrm{~V}$ three-phase current.

Electrical and mechanical data

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type \& \begin{tabular}{l}
typical \\
power \\
in kW \\
at \\
\(40^{\circ} \mathrm{C}\) \\
and \\
100\% \\
DCF
\end{tabular} \& \[
\begin{aligned}
\& \text { \# of } \\
\& \text { steps }
\end{aligned}
\] \& adjustme current at vol
230V~
oder
\[
230 \mathrm{~V}=
\] \& \begin{tabular}{l}
t range of ampere age of \\
\(3 \times 230 /\) 400V; 50 Hz
\end{tabular} \& D \& dim

E \& ensio \& in mm \& m \& K \& $$
\begin{aligned}
& \text { veight } \\
& \text { in } \\
& \text { kg }
\end{aligned}
$$

\hline BW 18 \& 1,2 \& 6 \& 0,2-5,2 \& - \& 230 \& 295 \& 182 \& 310 \& - \& 216 \& 8

\hline BW 19 \& 2,0 \& 6 \& 0,2-8,7 \& - \& 290 \& 410 \& 200 \& 440 \& - \& 234 \& 14

\hline BW 20 \& 3,0 \& 6 \& 0,3-13 \& 0,2-4,3 \& 290 \& 410 \& 335 \& 440 \& - \& 370 \& 20

\hline BW 80 \& 3,0 \& 6 \& 0,3-13 \& 0,2-4,3 \& 430 \& 500 \& 450 \& 700 \& 101 \& 430 \& 32

\hline BW 80 \& 5,0 \& 6 \& 0,6-22 \& 0,3-7,3 \& 430 \& 500 \& 450 \& 700 \& 101 \& 430 \& 35

\hline BW 81 \& 7,5 \& 6 \& 0,7-33 \& 0,4-11 \& 430 \& 600 \& 600 \& 800 \& 101 \& 524 \& 52

\hline BW 81 \& 10 \& 6 \& 0,7-44 \& 0,5-15 \& 430 \& 600 \& 600 \& 800 \& 101 \& 524 \& 55

\hline BW 82 \& 15 \& 10 \& - \& 0,5-22 \& 505 \& 800 \& 600 \& 1000 \& 122 \& 600 \& 85

\hline BW 82 \& 20 \& 10 \& - \& 0,6-29 \& 505 \& 800 \& 600 \& 1000 \& 122 \& 600 \& 90

\hline BW 83 \& 25 \& 10 \& - \& 0,7-36 \& 685 \& 940 \& 680 \& 1140 \& 122 \& 780 \& 125

\hline BW 83 \& 30 \& 10 \& - \& 0,9-43 \& 685 \& 940 \& 680 \& 1140 \& 122 \& 780 \& 130

\hline BWV83 \& 50 \& 20 \& \& 0,6-72 \& 685 \& 940 \& 680 \& 1140 \& 122 \& 780 \& 130

\hline
\end{tabular}

Type series BWMV37..

Technologies

- compact and very light design for higher continuous dissipation
- continuous dissipation switchable in steps
- forced ventilation by built-in fan 230 V ; 50 Hz ., with IEC power plug
- for easy mobile use, also transportable in a car

The complete power is divided in 2 up to 8 different steps, which are switched in parallel by electric contactors. The resistance value increases approx. $+15 \%$ between cold and operating temperature. The given power values will be achieved at operating temperature. The load resistor has for safety a temperature switch and an additional follow-up control of the fan. The bolt- or flat-type terminals are mounted submerged (safe for transportation). Additionally, the load resistor has acidproof rolls, gliding rails, and a trolley handle for better transportation.
The combination types with 4 main terminals are usable for DC- and AC-rated voltage. The three phase version fits for a rated voltage of $3 \times 230 / 400$ VAC, which is switched in star. The star point is in the resistor. Optionally also possible with 6 terminals or star point wired on terminal.

Application

- as load resistor for batteries in automotive- or telecommunication use
- as load resistor for one- and three phase power supply for e.g. emergency standby systems, uninterruptible power supplies
- use in laboratory or test area

Special design

- different power and rated voltage values on request
- special voltage for fan and electric contactors is possible
- degree of protection IP 23 possible
load resistors in light weight construction up to 100 kW , for DC-, AC- or three phase voltages (230/400V)

Easily transportable load resistors, with steel-grid elements in protection degree IP 20, housing made of aluminium, with temperature monitoring and forced ventilation by a built-in fan.

Electrical and mechanical data

Load resistor types for three-phase voltage $3 \times 400 \mathrm{~V}$

Type	max. cont. dissip. in kW	max. steps	max. current	number of built-in load steps in kW dim. D		weight in in mm kg		
BWMVD3700205	25	2	3×36	2	0	0	400	38
BWMVD3710305	50	4	3×72	2	1	0	400	45
BWMVD3720405	75	6	3×108	2	2	0	700	55
BWMVD3730405	100	8	3×144	2	1	1	700	62

Combinated load resistor devices, through setting a bridge they are suitable for AC- 230 (2x115)V and DC voltages 220 (2x110)V

Type	max. cont. dissip. in kW	max. steps	number of built-in load steps in kW				dim. D in mm	weight in kg
			$\begin{gathered} 230 \mathrm{~V} \text { AC } \\ 220 \mathrm{~V} \text { DC } \\ 2 \times 110 \mathrm{~V} \text { DC } \end{gathered}$	$\begin{gathered} 5 \\ 4,7 \\ 2 \times 2,34 \end{gathered}$	$\begin{gathered} 12,5 \\ 11,7 \\ 2 \times 5,85 \end{gathered}$	$\begin{gathered} 25 \\ 23,4 \\ 2 \times 11,7 \end{gathered}$		
BWMVC3700206	25	2		0	2	0	400	38
BWMVC3710306	50	4		0	2	1	400	45
BWMVC3720406	75	6		0	2	2	700	55
BWMVC3730606	100	8		0	4	2	700	62

The chart shows a choice of combinations for each dimension.

Example of dimensioning:
Please contact us, we would like to give you a detailed offer!

L

Type series FA.3.// FS.3..
load resistors in steel-grid design, self-ventilated, $5-60 \mathrm{~kW}$, for $3 \times 230 / 400 \mathrm{~V}$

Technologies

- continuous dissipation from 5 up to 60 kW
- switchable in parallel for higher continuous dissipation
- for floor-level mounting or for mobile applications optional with handgrip and steering rolls
- for outdoor location (FS..)

The necessary terminals are mounted on a terminal strip in the lower part of the device and are accessible after demounting a cover.

The resistance value increases approx. $+15 \%$ between cold and operating temperature. The given power values will be achieved at operating temperature. The load resistor can be chosen with star or delta wiring. On request we can build it for different voltages up to $3 \times 690 \vee \mathrm{AC}$ as well.

Application

An important application is the use as economic load resistor. Protection degree IP 20 is sufficient for installing in factory rooms, IP 23 is necessary for outdoor location.

Special design

- different power steps or combinations with higher power possible
- connection parts and enclosure out of stainless steel 1.4301
- mobile, for test area
- consoles for wall installation
- CEE-plug with cable and holder

IP

IP 23

FA...Steel-grid resistor unit, degree of protection IP 20, without weather-proof roof FS...Steel-grid resistor unit, degree of protection IP 23, with weather-proof roof

In completely closed zinc sheet enclosure with stationary safety guard at the top and bottom. Ceramic insulated flat or bolt terminals of 35 A up to 87 A in variable combinations for star and delta wiring are possible.

Electrical and mechanical data of load resistors

$\begin{aligned} & \text { Type } \\ & \text { FA.3.. / FS.3.. } \end{aligned}$	max. typical power in kW at $40^{\circ} \mathrm{C}$ and 100\%ED	resistor value in Ohm	current in A	dimension in mm				weight in kg
				A	B	C	$\begin{gathered} \text { D } \\ \text { only } \\ \text { IP23 } \end{gathered}$	
F.. 31218..	5,0	$3 \times 31,8$	$3 \times 7,2$	570	595	460	520	33
F.. 31215..	7,5	$3 \times 21,4$	$3 \times 10,9$	570	595	460	520	32
F.. 31221..	10,0	$3 \times 16,0$	$3 \times 14,5$	570	595	460	520	35
F.. 31224..	12,5	$3 \times 12,8$	3×18	570	595	460	520	36
F.. 31330..	15,0	$3 \times 10,6$	3×22	770	795	460	520	49
F.. 31442..	20,0	$3 \times 8,0$	$3 \times 28,9$	970	995	460	520	60
F.. 32351..	25,0	$3 \times 6,4$	3×36	770	795	710	770	78
F.. 32360..	30,0	$3 \times 5,3$	$3 \times 43,3$	770	795	710	770	82
F.. 32472..	35,0	$3 \times 4,6$	3×51	970	995	710	770	93
F.. 32475..	37,5	$3 \times 4,3$	3×54	970	995	710	770	95
F.. 32481..	40,0	$3 \times 4,0$	3×58	970	995	710	770	98
F.. 33399..	45,0	$3 \times 3,5$	3×65	770	795	960	1100	111
F.. 33414..	50,0	$3 \times 3,2$	3×72	970	995	960	1100	124
F.. 33423..	55,0	$3 \times 2,9$	3×80	970	995	960	1100	134
F.. 33432..	60,0	$3 \times 2,7$	3×87	970	995	960	1100	138

This chart shows a choice of preferred power types. Other continuous dissipation, voltage and ohmic values are possible.

Example of dimensioning and selection of a specific unit:
Type in star wiring FA $3121803-3 \times 31.8$, for $5 \mathrm{~kW}, 3 \times 7,2 \mathrm{~A}$

Type series FAV 3../ FSV 3..

Technologies

- model for high power ratings with best price-performance ratio
- power ventilated by integrated 230/400 V; 50 Hz axial flow fan
- for floor-level location
- continuous dissipation up to 250 kW
- paralleling of 2 or more units for even higher dissipation
- for outdoor location (FSV)

The necessary terminals are mounted on a terminal strip in the lower part of the device and are accessible after demounting a cover.

By the use of steel-grid elements with a typical power of 1100 W per steel-grid with forced ventilation we cover a power range of up to 250 kW per unit. The resistance value increases approx. +15\% between cold and operating temperature. The given power values will be achieved at operating temperature. You can achieve higher dissipations by installing several units in parallel.

Appliction

An important application is the use as load resistor for the testing of emergency standby power system. Protection degree IP 20 is sufficient for installing in factory rooms, IP 23 is necessary for outdoor location.

Special design

- with 2 temperature switches wired on terminals
- special voltages of fan
- please ask for devices with higher power ratings or other construction forms
- mobile, for test area by rollers
load resistors in steel-grid design, forced ventilation, $70-250 \mathrm{~kW}$, for $3 \times 230 / 400 \mathrm{~V}$

FAV... Steel-grid fixed resistor unit, degree of protection IP 20, without weatherproof roof, air outlet on top,
FSV... Steel-grid fixed resistor unit, degree of protection IP 23 with weatherproof roof, for outdoor location, air outlet at the side via air deflectors in the upper area.
In completely closed zinc sheet enclosure with barrier grid at the bottom and powered ventilation by an integrated ventilator. With air flow monitoring by wind indicator relay. Ceramic insulated flat or bolt terminals of 35A up to 400A in variable combinations available.

Electrical and mechanical data

This chart shows the size and the maximum power which can be built-in. You have much possibilities of combinations, depending on your needed power rating and your needed number of steps (examples see below).

Standard load resistors for $3 \times 230 / 400$ V; $50 \mathbf{H z}$

Type series FAVR.3../FSVR.3..

Technologies

- model for high power ratings with best price-performance ratio
- power ventilated by integrated 230/400 V; 50 Hz axial flow fan
- for floor-level location
- paralleling of 2 or more units for even higher dissipation
- with integrated power contactors in the attached switch cabinet to control the load steps

There are 2 possibilities to control the contactors of the individual load steps. Either by internal cam switches or by wiring the coils of contactors to terminals. The power connections in the switch cabinet are on terminals or on copper bars.
By the use of steel-grid elements with a typical power of 1100 W per steel-grid with forced ventilation we cover a power range of up to 250 kW per unit. The resistance value increases approx. +15\% between cold and operating temperature. The given power values will be achieved at operating temperature. Higher power ratings can be achieved by in parallel connection of several units.

Application

An important application is the use as load for the testing of emergency standby power systems or for use in test areas.

Special design

- with wirewound lamina type fixed resistors and the resistance value will change from cold to warm condition +/-1\%
- special voltages of fan
- enclosure and parts out of stainless steel, switch cabinet varnished
- mobile, for test area by rollers
load resistors in steel-grid design, forced ventilation, $70-250 \mathrm{~kW}$, with attached switch cabinet

FAV... Steel-grid fixed resistor unit, degree of protection IP 20, without weatherproof roof, air outlet on top,
FSV... Steel-grid fixed resistor unit, degree of protection IP 23 with weatherproof roof, for outdoor location, air outlet at the side via air deflectors in the upper area.

In completely closed zinc sheet enclosure with barrier grid at the bottom and powered ventilation by an integrated ventilator. With air flow monitoring by wind indicator relay. With attached switched cabinet for controlling the AC and DC loads. Control voltage 230 V AC or 24 V DC is possible.

Electrical and mechanical data

This chart shows the size and the maximum power which can built-in. You have very much possibilities for combinations, depending from your needed power and your needed steps (e.g. below).

Example for load resistors, e.g. AC/DC load

Type FAVR..	power - steps in kW for 3×400 V	FAVR(M). axuutr / exnoust alr
FAVR385660 FAVR385661	$\begin{gathered} 75 \\ 37,5 / 37,5 \\ \hline \end{gathered}$	
$\begin{aligned} & \hline \text { FAVR386900 } \\ & \text { FAVR386961 } \\ & \text { FAVR386961 } \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ 50 / 50 \\ 10 / 20 / 20 / 50 \end{gathered}$	
$\begin{aligned} & \hline \text { FAVR387560 } \\ & \text { FAVR387561 } \\ & \text { FAVR387681 } \end{aligned}$	$\begin{gathered} 175 \\ 75 / 100 \\ 50 / 50 / 50 / 25 \end{gathered}$	
FAVR388220	250	
FAVR388221 FAVR388402	$\begin{gathered} 150 / 100 \\ 5 \times 50 \end{gathered}$	16 M 0429, shown with option mobile

We like to send you for your individual application an offer. Please send us the rated voltage and the preferred steps of the load..

Further series:

1. FKK.. 3..

2. FAV 6../FSV6..

3. FALL 19..

4. FAL7../ FSL7..

Special characteristics:

- integrated in a duct section made by us, dimensions according to your specifications, Type FKKE
- for middle and higher dissipations up to 250 kW
- an economic version when a local fan is available, e.g. by the fan of a combustion engine
- with steel-grid elements, the resistance value increases between cold and operating temperature approx. $+15 \%$
- with one or more resistor steps
- built-in in a duct of the customer, Type FKKF...
- optionally available with terminal box see series T600E
- for continuous dissipation up to 250 kW
- versions in protection degree IP 20 and IP23 possible
- with wirewound resistor elements, constant ohmic value over a big temperature range, resistance change $+/-1 \%$, also under load
- with one or more resistor steps
- controlling of the load steps in the attached switch cabinet, type F.VR6..
- special voltages of fan
- connections with flat or bolt terminals inside the housing
- versions with low induction and with low noise possible
- mobile version with handgrip and steering rollers,
see seriesT500E
- various continuous dissipation up to $4,5 \mathrm{~kW}$ built in one housing
- in laboratory design
- with wirewound resistor elements, constant ohmic value over a big temperature range, resistance change $+/-1 \%$, also under load
- with one or more resistor steps
- also usable for higher currents, connections on flat clamp terminals or safety sockets
- also available as three phase version
see series T500E
versions in protection degree IP 20 or IP23
- for continuous dissipation up to 30 kW
- with wirewound resistor elements, constant ohmic value over a big temperature range, resistance change $+/-1 \%$, also under load
- with one or more resistor steps
- connection with flat or bolt terminals inside the housing
- versions with low induction and with low noise possible
- mobile version with handgrip and steering rollers, see series T500E

T 500- DIE MODULAREN / THE MODULAR ONES

Drahtgewickelte Lamellenfestwiderstände

 0,15 bis 30 KilowattDrahtgewickelte Lamellenfestwiderstände als Einzelelemente, die einbaufähig sind und daraus aufgebaute Lamellenfestwiderstandsgeräte in verschiedenen Schutz- und Befestigungsarten.

■ Anschluss an Litzen, Schraubschellen oder Klemmen, Abgreifschellen möglich
■ Einzellamellen zu Baugruppen kombiniert für spezielle Einbaulösungen in Schutzart IPOO
■ Für Wand- oder Bodenmontage in Schutzart IP20 oder IP23
■ Thermisches Überstromrelais, Temperaturschalter oder FRIZLEN DC-Powerswitch für thermische Überwachung und Abschaltung

Wirewound lamina type fixed resistors

0,15 up to 30 Kilowatt

Wirewound lamina type fixed resistors as individual components, that can be integrated into other units and composed lamina type fixed resistor units in different degrees of protection and mounting types.
\square Variable connections at wires, screw clips or terminals, with or without adjustable clips
■ In degree of protection IPOO single elements can be combined to units for special requirements
■ Up to degree of protection IP20 or IP23 for horizontal and vertical mounting

- Thermal overload relay, temperature switch or FRIZLEN DC-Powerswitch for thermal monitoring and switch off

Contents

Properties

Applications

		$\begin{gathered} \hline \mathrm{L} \\ + \\ \text { LB } \end{gathered}$	$\begin{gathered} \hline \text { FG } \\ + \\ \text { FGL } \end{gathered}$	FGB	$\begin{array}{\|l\|l\|} \hline \text { FGGT } \\ \text { FGBT } \\ \text { FGLT } \end{array}$	$\begin{gathered} \hline \text { FGN } \\ + \\ \text { FGBN } \end{gathered}$	$\begin{gathered} \hline \text { FGF. } \\ 610 \\ -14 \\ 614 \end{gathered}$	$\begin{gathered} \hline \text { FSL } \\ 16 \\ - \\ 20 \end{gathered}$	$\begin{gathered} \hline \text { FAL } \\ 16 \\ - \\ 20 \end{gathered}$	$\begin{gathered} \hline \text { FSLL } \\ 70 \\ - \\ 75 \end{gathered}$	$\begin{aligned} & \text { FAL } \\ & 70 \\ & - \\ & 75 \end{aligned}$	$\begin{gathered} \hline \text { F.V } \\ 685 \\ - \\ 688 \end{gathered}$
characteristics	page Symbol	$\begin{gathered} \mathrm{T} 520 \mathrm{E} \\ \mathrm{~T} 523 \mathrm{E} \end{gathered}$	T524E	T524E	T525E	T526E	$\begin{gathered} \hline \text { T527E } \\ -\quad \\ \text { T528E } \end{gathered}$	T529E	T529E	T530E	T530E	T531E
power from［kW］		0，15	0，25	0，37	0，25	1，5	4，0	0，25	0，25	2，5	2，5	75
power up to［kW］		1，11	3，0	1，5	3，0	4，4	22，0	4，5	4，5	30	30	250
max．number of terminals		－	2	2	2	10	2	12	12	30	30	40
degree of protection IP00	$\begin{aligned} & \text { IP } \\ & 00 \end{aligned}$	X										
degree of protection IP20－if mounted on an appropriate surface	20°		x	x	X	x	x					
degree of protection IP20	$\begin{aligned} & \hline \text { IP } \\ & 20 \end{aligned}$								x		X	x
degree of protection IP23	23							x		x		x
horizontal mounting	不为为		X	x	X	x	x			x	X	x
vertical mounting	隶		X	x	X	x	x	x	x			
mounting not allowed			x	x	x	x	x	x	x			
temperature switch（optional）	-9_{4}						x					x
thermal overload relay	（b－4＇				x		x					
FRIZLEN DC－POWERSWITCH	4						x					
adjustable clips possible	－ 7	X	x			x		x	x	x	X	x
integration possible	E	x										
forced ventilation	88											x

Rights for improvements and modifications of our products reserved． Modifications，errors and misprints justify no claim for damages． We refer to our terms of sales and delivery．

Technical

 detailsConstruction

Resistance values/
Production tolerance/ Temperature dependency

Adjustable clips

Taps

Time constant

Degrees of protection

Protective measures

CE Devices of degree of protection IP 20 or higher correspond to the CE low voltage directive.
Power resistors being passive electronical or electrical units are not affected by the specific EMC standards. They do not produce any interfering radiations nor are they affected.

Air－and Creepage distance

Air and creepage distances are rated according to IEC 664 （DIN EN 0110 part 1）for the overvoltage category III and degree of pollution 3 for grounded three－phase mains supplies up to $3 \times 500 \mathrm{~V}$ ．Testing voltage 2.5 kV AC．
These data are valid for all devices that are connected to mains voltage and derived voltages，as for example the intermediate circuit voltage of frequency converters．
Do not conclude from the calculated relation between the rated power and the maximum producible ohmic value to the rated voltage！

A protection of the resistors against overloading or excess temperature－as demanded in standards－can be realized with the help of a thermal overload relay provided by the user．The set current must correspond to the rated current of the resistor，that is calculated according to continuous duty power and resistance value corresponding to Ohm＇s law（formula：see＂terminal details＂p ．T517E）．

Concerning the series FGT，FGBT，FGLT and FGFT the thermal overload relay is a component of the device－with exceeding of the rated current a signal contact is released．There will not be a disconnection of the resistor．Resetting by hand．

Another kind of the excess temperature monitoring，particularly suited for long－term overloading，is the equipment with a temperature switch．In IP 20／23－resistor devices it is wired on terminals，in IP 00 resistors the switch is directly connectable and releases a signal contact when the set temperature is exceeded．There will not be a disconnection of the resistor．See type series FGF．Q and F．VQ．

You can inform yourselfs about function and restrictions by our data sheet „Tripping of monitoring devices＂．
We can send it to you on request．

Integrated overload switch for a maximum of 850 VDC to protect the resistor．It protects the integrated resistor against constant overload and against too high short time peak power，e．g．caused by a false operational mode or a fault by an short circuited chopper transistor．Possible damage in the environment by overheating and burning are effectively avoided．
So you receive an intrinsically safe resistor protection degree even for IP20 ${ }^{(1)}$ ．The FRIZLEN DC－POWERSWITCH can also be integrated in the switch cabinet．
After a successful fault clearance the DC－POWERSWITCH can be switched on like a normal automatic cutout．
We can send you more technical details and characteristics on request．

Attention：Frizlen DC－POWERSWITCH are only suited for monitoring and disconnecting from DC－voltage with pure resistive load（DC1）up to 850 VDC．

Contact ratings of the signal contacts of temperature switches and thermal overload relays．
－2A／24 VDC（DC11）
－ 2 A／ 230 VAC（AC11）
Contact ratings of the signal contacts of the DC－Powerswitch：
－ 5 A／ 24 VDC（DC11）
－ 10 A／ 230 VAC（AC11）
Storage temperature：$\quad-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Operation temperature：$-30^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ ．If the ambient temperature is higher than $40^{\circ} \mathrm{C}$ ，you have to decrease the continuous dissipation by 4% per 10 K temperature rise！
2000 m above sea level，you have to decrease the continuous dissipation for 10% per 1000 m altitude， maximum altitude 5000 m above sea level

Restrictions are to be made for the type series FGFT．and FGFX．because of the built－in monitoring device．Operation temperature：$-20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ ．

Ventilation / Temperatures

The given typical power values are valid for 100% duty cycle factor (DCF) (continuous dissipation) under the following conditions:

- temperature rise of 200 K at the surface of fixed resistor enclosures (degree of protection> IP00)
- temperature rise of 300 K at the surface of fixed resistor elements (degree of protection IP00).
- unhindered access of cooling air
- unhindered diverting of warmed up air (mind a minimum separation distance of approx. 200 mm to neighbouring components/walls and of approx. 500 mm to components above/ceiling)

Since electrical energy is converted into heat, heating up of the exhaust air and of the enclosure at the air outlet is inevitable.
The highest temperature with typical power may be maximum $200^{\circ} \mathrm{C}$ above the ambient temperature. Since the cooling of the devices is accomplished by convection and/or forced ventilation (series FAV/ FSV), the above mentioned aspects have absolutely to be considered.

In cases of insufficient cooling or false mounting the resistor or the surrounding construction units could be overheated or ruined.

Depending upon use it can be possible to increase the continuous dissipation of the resistors, if higher temperatures are accepted. With an increase of e.g. 130% of the typical power you will have a rise in temperature of 350 K at the surface of the resistor. In other cases of application the continuous dissipation must be reduced, for example with temperature sensitive devices in the surrounding area. The dependence between temperature rise and actual continuous dissipation is shown in the diagram below.

Excess temperature in dependence of continuous dissipation

Normal operation range (up to 130\%):

Recommended operation range for maximum product life and failure free operation Allowable threshold (up to 160\%):
Allowable operation range, danger of shorter product life and higher failure probability Unallowable operation range (more than 160\%):
Danger of excessive heat and destruction of resistor and neighbouring components

Short time dissipation/

Total cycle time/
Duty cycle factor(DCF)
wanted: continuous dissipation

At many applications resistors are not loaded in continuous but in short time operation. In the following you will find indications, how to calculate the allowable short time dissipation with the help of the duty cycle factor (DCF) and the overload factor (OLF). If the DCF factor is not known, it can be calculated as follows:

$$
\text { Duty cycle factor }(D C F)=\frac{\text { Switch on time }\left(t_{\text {on }}\right)}{\text { Total cycle time }}
$$

Total cycle time $=120 \mathrm{~s}$

$$
E D_{1}=\frac{48 s}{120 s}=0,4=40 \%
$$

$$
E D_{2}=\frac{7,5 s}{30 s}=0,25=25 \%
$$

warning: The total cycle time may be maximum 120 s -
shorter total cycle times are possible.
The total cycle times for motors are mostly higher than 120 s

By comparison of the known DCF-factor with the following diagram or table you can work out the overload factor (OLF) and/or the continuous and the short time dissipation.

Overload factor (OLF) in dependence of duty cycle factor (DCF)
(Total cycle time $=120 \mathrm{~s}$)

ED	1%	3%	6%	15%	25%	40%	60%	80%	100%
ÜF	22	13	8,2	4,2	3,0	2,2	1,5	1,12	1,0

The continuous and the short time dissipation can be calculated as follows:
Short time dissipation $=$ Continuous dissipation \times OLF
Continuous dissipation $=\frac{\text { Short time dissipation }}{\text { Overload factor }(\text { OLF })}$

- Resistor with a short time dissipation of 50 kW for 30 s and a total cycle time of 120s
- The duty cycle factor (DCF) is $30 \mathrm{~s}: 120 \mathrm{~s} \times 100 \%=25 \%$
- Overload factor (OLF) for 25\% DCF, according to table it is 3,0
- The continuous dissipation is $50 \mathrm{~kW}: 3,0=16,7 \mathrm{~kW}$;
$\Rightarrow \quad$ You need a resistor with a continuous dissipation of at least $16,7 \mathrm{~kW}$!

Terminal details/ Monitoring devices/

Cross section

Wiring If terminals are required, the connections are wired by means of flexible, heat resistant, silicone-insulated wire on a terminal strip that is located in the lower and/or front part of the equipment within the area of the entering cooling air.
If the wiring is accomplished by the user, make sure that a heat resistant wire is used.

With the series F.L 7.. as well as with F.V 68.. there is an undrilled cable entry strip in the lower part. It can be provided by the user with appropriate drillings for cable glands as strain relief.

Please mind the mounting indications in the corresponding type series! You will find these icons in the data sheets:

Allowable: On horizontal surfaces

Allowable: On vertical surfaces terminals at the bottom

Not allowable: On vertical surfaces terminals at the top, left or right

Allowable: On vertical surfaces

Type series L／LB

Technologies

－particularly flat design
－suitable for integration
－assembled units possible
－various lengths and widths， therefore many specifications depending on requirement
－continuous dissipation up to 1110 W
－adjustable clips are available for both type series

150－1110 W with connection at wires，lugs or
screw clips

Wirewound lamina type fixed resistors，degree of protection IP 00 with ridged ceramic insulators from steatite．Standard version with straps from zinc plated steel in
2 widths：type series L．．（standard version） type series LB．．（wide version）

Connection types and versions

We provide three versions with various connection types
－With wires，version L．．D and LB．．D
－With lugs and connecting screws，version L．．and LB．．
－With screw clips，version．L．．C and LB．．C
The last two can also be provided with adjustable clips

Version L．．D and LB．．D

lamina type fixed resistors with connection at 2 hard soldered wires．Standard version（if no other data）：Silicone insulated wire（SIF），cross section 1，5 mm^{2} ， length of wires D1 and D2 500 mm each．Suitable for all resistance values．

Version L．．and LB．．

lamina type fixed resistors with 2 wire lugs as connection points，which are provided with M5 screw combinations for the connection．Only suitable for resistance wires from cross section $0,8 \mathrm{~mm}$ on！

Version L．．F and LB．．F
With one or several adjustable clips，that can be modified（F，2F，3F，4F） Example：LB5 2F－21，wide lamina LB5 with 2 adjustable clips and 21Ω ．

Version L．．C and LB．．C
lamina type fixed resistor with 2 screw clips as end clips，that are prepared with M5 screw combinations for the connection．Suitable for all resistance values．

Version L．．C．F and LB．．C．F
With one or several adjustable clips，that can be modified（CF，C2F，C3F，C4F） Example：L10 CF－150，standard lamina L10 with 1 adjustable clip and 150Ω ．

Special versions of the support strap

－from aluminium or stainless steel for a low noise and low inductance version
－from zinc plated perforated steel sheet for a better ventilation when incorporated horizontally or into units with forced ventilation．
－With special dimensions to perfectly suit the requirements of the application

Type series L / LB

Options to perform the connection wires for version L..D, LB..D

1. Insulation and cross section of wires

In standard version wires are silicone insulated (SIF) with a cross section of $1,5 \mathrm{~mm}^{2}$, colour black
Continuous temperature $+180^{\circ} \mathrm{C}$ (for a short time $200^{\circ} \mathrm{C}$)
We can deliver the following variations with additional charge:

- Silicone insulated wire cross section $2,5 \mathrm{~mm}^{2}$, colour black (only available for resistance wires from diameter $1,2 \mathrm{~mm}$ on)
- Teflon insulated wire FEP (silicone free), cross section $1,5 \mathrm{~mm}^{2}$, colour transparent, continuous temperature $205^{\circ} \mathrm{C}$
- Teflon insulated wire FEP/UL, UL approved (UL 1330), cross section AWG14 (equal to $2,08 \mathrm{~mm}^{2}$), colour white with UL-print, continuous temperature $200^{\circ} \mathrm{C}$
- silicone- and Teflon free wire name brand Radox 155, UL approved (UL 3298), cross section AWG14, colours yellow, red or blue, continuous temperature $155^{\circ} \mathrm{C}$

2. Lengths of wires

In standard version wires D1 and D2 are both 500 mm long , but can be modified and provided in various lengths.
3. Equipment of the open wire endings (connection provided for the customer)

In standard version wires are not bared and not equipped with connection devices. For an additional charge we provide:

- lugs M4 or M5, blank or insulated with heat shrink tubing
- fast-on connections $6,3 \times 0,8$ straight or angled, blank or with enclosure
- conductor sleeves, blank
- bi- or multi-pole plugs for easy connection by the user

4. Resistor taps

For special applications we provide further connection wires as fixed taps.
5. How to order

If you want to modify our standard version please specify the connection wires as follows (example):
wire D1 : Radox 155 - Insulation, AWG 14, 300 mm long, yellow, with conductor end sleeve blank
wire D2 : Radox 155 - Insulation, AWG 14, 400 mm long, blue, with fast-on connection $6,3 \times 0,8$ blank, straight

Combinations of several lamina type fixed resistors to form a unit

- Several laminas can be combined by brackets or threaded bolts to form units ready to connect and to integrate
- By a range of enclosures or partial enclosures we provide all kinds of ducts for better ventilation and screening against heat sensitive parts

Examples of constructions

- Unit consisting of 2 paralleled laminas L4
- The laminas are combined by threaded bolts to a unit
- Three-side cover, can be used for mounting
- Wire connection and lugs M5 (with heat shrink tubing)

- Unit consisting of 2 laminas L4 connected in series
- The laminas are combined by brackets to a unit
- Wire connection with straight fast-on connection 6,3 $\times 0,8$ in an enclosure

- Unit consisting of 4 laminas L3 connected in series
- The laminas are combined by threaded bolts to units
- Wire connection and lugsM4 (with heat shrink tubing)

Type series L

The selection of the windings below is based upon economical aspects. Other windings with an increased weight of the wire for better energy absorption capacity or different ohmic values on request. The given power in W refers to individual mounting, ventilation and unhindered access of air for 100\% DCF (continuous dissipation). The power has to be reduced by the factor 1,21 when several laminas are combined or when integrated into an enclosure.

type			L2	L3	L4	L5	L6	L7	L8	L9	L10
power [W] at $40^{\circ} \mathrm{C}$ and 100\% ED			150	235	300	380	460	535	610	690	760
Dimension A [mm]			140	210	260	340	390	445	520	560	620
Dimension B [mm]			155	225	275	355	405	460	535	575	635
type of alloy	tor wire $\varnothing[\mathrm{mm}]$	pitch of ridged ceramic insulators [mm]	resistance values in Ω								
CrAl 255	0,5	2	54	84	115	145	176	207	237	268	299
CrAl 255	0,55	2	45	70	96	121	147	172	198	223	249
CrAl 255	0,6	2	38	60	81	102	124	145	167	188	210
CrAl 255	0,65	2	32	50	68	86	104	122	140	158	177
NiCr 3020	0,6	2	28	43	58	73	90	104	120	135	150
NiCr 3020	0,65	2	24	36	49	62	76	89	103	115	128
NiCr 3020	0,7	2	20	31	43	54	66	77	89	100	111
NiCr 3020	0,75	2	18	27	37	47	57	67	77	87	96
NiCr 3020	0,8	2	16	24	33	41	50	59	68	76	85
CuNi 44	0,6	2	12	20	27	34	41	49	56	63	71
CuNi 44	0,65	2	11	17	23	29	35	42	48	54	60
CuNi 44	0,7	2	9,2	14	20	25	30	36	41	46	52
NiCr 3020	0,9	3	8,0	13	17	22	26	31	36	40	45
NiCr 3020	1,0	3	6,4	10	14	18	21	25	29	32	36
NiCr 3020	1,1	3	5,4	8,4	12	15	18	21	24	27	30
NiCr 3020	1,2	3	4,5	7,1	9,7	13	15	17	20	23	25
CuNi 44	0,9	3	3,8	5,9	8,1	10	12	14	16	19	21
CuNi 44	1,0	3	3,1	4,8	6,6	8,3	10	11	13	15	17
CuNi 44	1,1	3	2,5	4,0	5,4	6,9	8,3	9,8	11	12	14
CuNi 44	1,2	3	2,1	3,3	4,6	5,8	7,0	8,2	9,4	10	11
CuNi 44	1,3	3	1,9	2,9	4,0	5,0	6,1	7,1	8,2	9,2	10
CuNi 44	1,4	3	1,5	2,5	3,3	4,2	5,1	6,0	6,9	7,8	8,7
CuNi 44	1,3	4	1,4	2,2	3,0	3,8	4,6	5,4	6,2	7,0	7,8
CuNi 44	1,4	4	1,2	1,9	2,5	3,2	3,9	4,5	5,2	5,9	6,5
CuNi 44	1,5	4	1,0	1,6	2,2	2,8	3,4	4,0	4,5	5,1	5,7
CuNi 44	1,6	4	0,92	1,4	2,0	2,5	3,0	3,5	4,0	4,5	5,0
CuNi 44	1,7	4	0,83	1,3	1,8	2,2	2,7	3,1	3,6	4,1	4,5
CuNi 44	1,6	5	0,73	1,1	1,5	2,0	2,4	2,8	3,2	3,6	4,0
CuNi 44	1,7	5	0,65	1,0	1,4	1,8	2,1	2,5	2,9	3,2	3,6
CuNi 44	1,8	5	0,57	0,89	1,2	1,5	1,9	2,2	2,5	2,8	3,2
CuNi 44	1,9	5	0,52	0,81	1,1	1,4	1,7	2,0	2,3	2,6	2,9
CuNi 44	2,0	5	0,46	0,72	0,98	1,2	1,5	1,8	2,0	2,3	2,6

version L .. D

L .. and L.. F

ス adjustable clip , F^{\prime} optional
15 M 0345

L .. C and L .. C.F
 15 M 0084

Example of dimensioning and selection of a special unit:

lamina type fixed resistor 380 W , resistance value 10Ω,
with connection at screw clips, with an additional adjustable clip: selected: L 5 CF - 10

Type series LB

The selection of the windings below is based upon economical aspects. Other windings with an increased weight of the wire for better energy absorption capacity or different ohmic values on request. The given power in W refers to individual mounting, ventilation and unhindered access of air for 100\% DCF (continuous dissipation). The power has to be reduced for the factor 1,21 when several laminas are combined or when integrated into an enclosure.

type			LB2	LB3	LB4	LB5	LB6	LB7	LB8	LB9	LB10
power [W] a	C and 1		220	345	445	555	665	785	895	1000	1110
dimension A			140	200	260	320	380	440	500	560	620
dimension B			155	215	275	335	395	455	515	575	635
Type of alloy	tor wire $\varnothing[\mathrm{mm}]$	pitch of ridged ceramic insulators [mm]				resis	e valu	in Ω			
CrAl 255	0,8	3	21	32	44	56	68	80	92	103	115
CrAl 255	0,9	3	16	26	35	44	53	63	72	81	91
CrAl 255	1,0	3	13	21	28	36	43	51	59	66	74
NiCr 3020	0,9	3	12	18	25	32	39	45	52	59	66
NiCr 3020	1,0	3	9,5	15	20	26	31	37	42	47	53
NiCr 3020	1,1	3	7,8	13	17	21	26	30	35	39	44
NiCr 3020	1,2	3	6,6	11	14	18	22	25	29	33	37
CuNi 44	0,9	3	5,5	8,7	11	15	18	21	24	28	31
CuNi 44	1,0	3	4,4	7,0	9,5	12	14	17	20	22	25
CuNi 44	1,1	3	3,7	5,8	7,9	10	12	14	16	18	21
CuNi 44	1,2	3	3,1	4,9	6,7	8,4	10	12	13	15	17
CuNi 44	1,3	3	2,7	4,2	5,8	7,3	8,9	10	12	13	15
CuNi 44	1,4	3	2,3	3,6	4,9	6,2	7,5	8,8	10	11	12
CuNi 44	1,3	4	2,1	3,2	4,4	5,6	6,7	7,9	9,0	10	11
CuNi 44	1,4	4	1,8	2,7	3,7	4,7	5,7	6,6	7,6	8,6	9,6
CuNi 44	1,5	4	1,5	2,4	3,2	4,1	4,9	5,8	6,6	7,5	8,3
CuNi 44	1,6	4	1,3	2,1	2,9	3,6	4,4	5,1	5,9	6,6	7,4
CuNi 44	1,7	4	1,2	1,9	2,6	3,3	3,9	4,6	5,3	6,0	6,6
CuNi 44	1,6	5	1,0	1,7	2,3	2,9	3,4	4,0	4,6	5,8	5,8
CuNi 44	1,7	5	0,95	1,5	2,0	2,6	3,1	3,7	4,2	4,7	5,3
CuNi 44	1,8	5	0,83	1,3	1,8	2,3	2,7	3,2	3,7	4,2	4,6
CuNi 44	1,9	5	0,76	1,1	1,6	2,1	2,5	2,9	3,4	3,8	4,2
CuNi 44	2,0	5	0,67	1,0	1,4	1,8	2,2	2,6	3,0	3,4	3,7

version LB .. D

LB .. and LB.. F

15 M 0345

LB .. C and LB .. C.F

Example of dimensioning and selection of a special unit:

lamina type fixed resistor 1000 W ,resistance value 15Ω, with connection at 2 hard soldered joint wires of following lengths: wire D1 $=800 \mathrm{~mm}$ and wire D2 $=1000 \mathrm{~mm}$, version with silicone insulated wire, cross section $1,5 \mathrm{~mm}^{2}$ selected: LB 9 D - 15, wire D1: 800; wire D2: 1000

Type series FG／FGB／FGL

Technologies

－flat construction form
－continuous dissipations up to 3，0 kW
－Wall mounting or mounting on the switch cabinet
－adjustable clips available for all type series，besides FGB
－up to 20A 2－pole porcelain terminal
－up to 35A 2－pole flat terminal

The given power rating values are valid for 100% DCF（continuous dissipation）． For short time operation you will find the values in the following table as a function of the duty cycle factor（DCF）． Just multiply by the corresponding overload factor（OLF）．

ED	60%	40%	25%	15%	6%
ÜF	1,5	2,2	3,0	4,2	8,2

These overload factors are valid for a total cycle time of maximum 120 s ．

You will find further details in chapter Technical Details，pages T513E－T517E．

There are various applications for wall mounting or mounting on the switch cabinet because of the flat and compact construction．

An important application is the use as braking resistor for motor／generator drive of motors with frequency converters．

Special design

－Version of low inductance and low noise（support strap from aluminium or stainless steel）
－version with degree of protection IPOO type series FK／FKB／FKL on request

Wirewound lamina type fixed resistor，degree of protection IP $20^{(1)}$ in zinc plated steel sheet enclosure with 2 terminals and PG11－cable gland in attached terminal box．
${ }^{(1)}$ mounted on an appropriate surface

Electrical and mechanical data

type	power in kW at $40^{\circ} \mathrm{C}$ and 100\％ DCF	production range Ω－value		number of laminas and size	dimensions in mm					max． weight in kg
FG 2	0，25	0，23	40	2 L2	140	184	92	64	240	1，3
FG 3	0，39	0，36	62	2 L3	210	254	92	64	310	1，7
FG 4	0，50	0，49	86	2 L4	260	304	92	64	360	2，4
FG 5	0，63	0，62	100	2 L5	340	384	92	64	440	2，6
FG 6	0，75	0，75	130	2 L6	390	434	92	64	490	2，8
FG 7	0，90	0，90	150	2 L 7	445	489	92	64	545	3，0
FG 8	1，00	1，0	170	2 L 8	520	564	92	64	620	3，5
FGB 2	0，37	0，34	24	2 LB2	140	184	92	64	240	1，5
FGB 3	0，57	0，53	36	2 LB3	200	254	92	64	310	1，9
FGB 4	0，74	0，72	50	2 LB4	260	304	92	64	360	2，6
FGB 5	0，92	0，90	64	2 LB5	320	364	92	64	420	2，8
FGB 6	1，10	1，1	78	2 LB6	380	434	92	64	490	3，0
FGB 7	1，30	1，3	90	2 LB7	440	489	92	64	545	3，4
FGB 8	1，50	1，5	100	2 LB8	500	544	92	64	600	4，0
FGL 640402	1，00	1，0	170	4 L4	260	300	185	150	360	4，0
FGL 660402	1，50	1，5	260	4 L6	390	430	185	150	490	5，0
FGL 680402	2，00	2，0	350	4 L 8	520	560	185	150	620	6，0
FGL 660602	2，20	2，2	390	6 L6	390	430	275	240	490	7，0
FGL 680602	3，00	3，0	530	6 L 8	520	560	275	240	620	9，0

Example of dimensioning and selection of a specific unit：

Monophase braking resistor for drive with frequency converter，short time power：
8 kW at $6 \% \mathrm{DCF}$ ，total cycle time shorter than 120 s ，intermediate circuit voltage 650 V ；resistance value 50Ω ；Calculation of the continuous dissipation： $8 \mathrm{~kW}: 8,2=$ $0,98 \mathrm{~kW}$ ．selected：FG $8-50$ with continuous dissipation 1 kW
$\begin{aligned} \frac{\mathrm{FG}}{\left[-\frac{50}{L}\right.} & \text { ohmic value } \pm 10 \% \\ & \text { size } \\ & \text { type series }\end{aligned}$

Technologies

- integrated thermal overload relay up to 24 A
- with thermal protection
- connections directly at the overload relay
- current is adjusted
- Wall mounting or mounting on the switch cabinet

Thermal overload relay

The thermal overload relay is mounted in the attached terminal box and may signal an overloading of the resistor. This is done by contacts normally closed/opened free of potential (NC/NO). This signal has to be considered by the customer, e.g. by warning or net side disconnection.

Warning: There will not be a disconnection of the resistor!

Cross sections / cable glands:

fine stranded, for relays up to	connection in mm^{2}	
	13 A	24 A
main current	$1 \times 2,5$	2×6
auxiliary curr.	$1 \times 2,5$	$2 \times 2,5$
Cable glands	PG9 +	$\mathrm{M} 12+$
	PG 11	PG 16

Contact rating of the signal contacts:

- 2 A / 24 VDC (DC11)
- 2 A / 230 VAC (AC11)

Application

Braking resistors for motor/generator drive of motors with frequency converters with monitoring of the current.

Special design

- Version of low inductance and low noise (support strap from aluminium or stainless steel)

Wirewound lamina type fixed resistor, degree of protection IP $20^{(1)}$ in zinc plated steel sheet enclosure. Cable glands and as well as thermal overload relay in attached terminal box.
${ }^{(1)}$ mounted on an appropriate surface

Electrical and mechanical data

type	power in kW at $40^{\circ} \mathrm{C}$ and 100\% DCF	production range Ω-value		$\begin{gathered} \hline \text { \# of } \\ \text { lamina } \\ \text { and } \\ \text { size } \end{gathered}$	dimensions in mm						max weigt in kg	
							overload relay up to					
			up to		L	M	R	U	$\begin{gathered} 13 A \\ 0 \end{gathered}$	$\begin{gathered} 24 \mathrm{~A} \\ \mathrm{O} \end{gathered}$		
FGT 2	0,25	0,2	40		2 L2	140	184	92	64	260	293	1,9
FGT 3	0,39	0,3	62	2 L3	210	254	92	64	330	363	2,3	
FGT 4	0,50	0,4	86	2 L4	260	304	92	64	380	413	3,0	
FGT 5	0,63	0,6	100	2 L5	340	384	92	64	460	493	3,2	
FGT 6	0,75	0,7	130	2 L6	390	434	92	64	510	543	3,4	
FGT 7	0,90	0,9	150	2 L7	445	489	92	64	565	598	3,7	
FGT 8	1,00	1,0	170	2 L8	520	564	92	64	640	673	4,1	
FGBT 2	0,37	0,4	24	2 LB2	140	184	92	64	260	293	2,1	
FGBT 3	0,57	0,6	36	2 LB3	200	254	92	64	330	363	2,5	
FGBT 4	0,74	0,8	50	2 LB4	260	304	92	64	380	413	3,2	
FGBT 5	0,92	0,9	64	2 LB5	320	364	92	64	440	473	3,4	
FGBT 6	1,10	1,1	78	2 LB6	380	434	92	64	510	543	3,6	
FGBT 7	1,30	1,3	90	2 LB7	440	489	92	64	565	598	4,0	
FGBT 8	1,50	1,5	100	2 LB8	500	544	92	64	620	653	4,6	
FGLT 640402	1,00	1,0	170	4 L4	260	300	185	150	380	413	4,6	
FGLT 660402	1,50	1,5	260	4 L6	390	430	185	150	510	543	5,6	
FGLT 680402	2,00	2,0	350	4 L8	520	560	185	150	640	673	6,6	
FGLT 660602	2,20	2,2	390	6 L6	390	430	275	240	510	543	7,6	
FGLT 680602	3,00	3,0	530	6 L8	520	560	275	240	640	673	9,6	

15 M 0118 (13A; PG9+PG11) + 15 M 0119 (24A; M12+PG16)

Example of dimensioning and selection of a specific unit:

Monophase braking resistor for drive with frequency converter, short time power: $8,4 \mathrm{~kW}$ at 15% ED, , total cycle time shorter than 120 s , intermediate circuit voltage 650V; resistance value 50Ω; calculation of the continuous dissipation: 8,4 kW : 4,2 $=2 \mathrm{~kW}$ selected: FGLT 680402-50 with continuous dissipation 2 kW

Technologies

- Continuous dissipation up to $4,4 \mathrm{~kW}$
- Wall mounting and mounting on the switch cabinet
- Up to 10 terminals possible
- Adjustable clips possible

The connections are accessible after demounting a part of the cover. FGBN-version is equipped with wider laminas and therefore suited for higher power ratings.
The given power rating values are valid for 100% DCF (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF).

ED	60%	40%	25%	15%	6%
ÜF	1,5	2,2	3,0	4,2	8,2

These overload factors are valid for a total cycle time of maximum 120 s

You will find further details in chapter Technical Details, pages T513E-T517E.

The number of terminals is determined by position 5 and 6 of the type designation.

Application

- Three-phase load resistors
- Starting and regulating resistors for three-phase slip-ring rotor motors
- current limiting resistors for threephase squirrel-cage motor

Special design

- version with degree of protection IP00 type series FKN / FKBN. The dimensions are identical with FGN / FGBN
$0,5-4,4 \mathrm{~kW}$ with up to 10 terminals

IP
$20^{\text {® }}$

Wirewound lamina type fixed resistor, degree of protection IP $20^{(1)}$ in fixed condition, in zinc plated steel sheet enclosure with ceramic insulated flat terminals up to 35 A and ceramic insulated bolt terminals for higher currents inside the device. With drillings for 3 cable entry points PG 13,5, which are closed by rubber sockets.
${ }^{(1)}$ mounted on an appropriate surface

Electrical and mechanical data

type	power in kW at $40^{\circ} \mathrm{C}$ and 100\%DCF	production range Ω-value (single-phase)		max. number of lamina and size	maximimum \# of terminals in dependency of the size FK - flat terminals BK - bolt terminals		
		from	up to		FK	BK M6	BK M8
FGN 6406..	1,5	1,5	250	6 L4			
FGBN 6406..	2,2	2,2	150	6 LB4	10 pcs.. max.	8 pcs. max.	7 pcs. max.
FGBN 6606..	3,3	3,3	230	6 LB6	$\begin{aligned} & \max . \\ & 35 A \end{aligned}$	$\begin{aligned} & \max . \\ & 60 \mathrm{~A} \end{aligned}$	
FGBN 6806..	4,4	4,5	310	6 LB8			

type	A	dimension in mm	weight in kg
	400	350	
FGN 6406..	400	350	7,0
FGBN 6406..	517	470	9,0
FGBN 6606..	634	580	11
FGBN 6806..		14	

FGN.. / FGBN..

15 M 0090

Example of dimensioning and selection of a specific unit:

Three-phase load resistor $3 \times 1,4 \mathrm{~kW}=4,2 \mathrm{~kW}$ for $3 \times 230 / 400 \mathrm{~V} ; 50 \mathrm{~Hz} ; 3 \times 6,1 \mathrm{~A}$; $3 \times 38 \Omega$, each phase wired on 2 flat terminals 35 A .
selected: FGBN 680606-3x 38 with continuous dissipation $4,4 \mathrm{~kW}$

Type series FGF.. 61..

Technologies

- low induction and low noise
- big weight of wire, therefore, high energy absorption capacity
- extremely compact construction form
- continuous dissipation up to 22 kW
- for mounting on the switch cabinet
- for wall mounting, perforated steel sheet at top and bottom, terminals at bottom
- type and size of terminals are selectable according to the mounting place and connections technics in the matrix
- optional with temperature switch (type FGF.Q*)
- optional with thermal overload-relay (type FGFT)
- optional in intrinsically safe version with FRIZLEN DC-POWERSWITCH ${ }^{(2)}$ (type FGFX)

Application

This unit are fitting especially for mounting on, beside or in a switch cabinet by their relatively flat and compact construction in 5 widhts with various connections and monitoring possibilities (Please mind the description of the types).

An important application is the use as braking resistor for motor/generator drive of motors with frequency converter with low noise for elevators and lifts in apartment houses and hospitals or hoists in theatre and opera house.

You will find further indications for dimensioning of a resistor for short time dissipation in chapter Technical Details pages T513E up to T517E.

Remark

When resistor is integrated into a switch cabinet we recommend to provide a corresponding forced ventilation by the user for better removal of larger dissipations.

Wirewound lamina type fixed resistor, degree of protection IP $20^{(1}$, in zinc plated steel sheet enclosure, with max. 2 terminals in different form for the resistor and optional 2 terminals for temperature switch, either in the housing or in an attached terminal box, with optionally integrated thermal overload relay or DC-Powerswitch. In low induction and low noise version by support straps of aluminium. Chart with type selection on the next page.
${ }^{(1)}$ mounted on an appropriate surface

Description of the different types

Type FGFG:
Version with 2 flat type terminals up to max. 35 A rated current in the attached terminal box with cable gland. An additional temperature switch is not possible.

Type FGFK(Q*):

Version like FGFG, with a bigger attached terminal box with cable glands, the space is sufficient for 2 terminals up to M8 (max. 115 A rated current), and for 2 additional porcelain terminals for an optional temperature switch (FGFKQ).

Type FGFL(Q*):

Version, where all terminals are mounted on the terminal strip inside the housing. Terminals up to M8 (max. 115 A rated current) are accessible after disassembling a part of the cover. If equipped with temperature switch, there are 2 additional porcelain terminals on the terminal strip (Type FGFLQ).No cable glands.

Type FGFT:

Version with integrated thermal overload relay in the attached terminal box with cable glands up to max. 80 A rated current. With integrated short-circuit and overload signalling. Connection directly at the overload relay.

Type FGFX:

Intrinsically safe version with integrated FRIZLEN DC-POWERSWITCH in the attached terminal box with cable glands, up to max. 40 A rated current. With integrated short-circuit and overload protection inclusive switching off the resistor and signalling. Connection directly at the FRIZLEN DC-POWERSWITCH ${ }^{(2)}$. ${ }^{(2)}$ DGBM Nr. 202009015851.9

Attention: Only for DC voltage up to 850 VDC.

Rated current and cross section of terminals and devices

See technical details on page T517E.

* Remark to the types FGFKQ and FGFLQ with temperature switch: The maximum number of lamina type resistors has to be reduced by 2 for all 5 widths of housing.

Monitoring options of the type series FGF．．61．．

1．Signalling－no disconnection！

This warning has to be considered by the customer，e．g．by a warning or disconnection of the mains through the customer．Details，on page T514E．

1a）with temperature switch（FGF．Q）

Different types can be equipped for temperature monitoring with a temperature switch which monitors an overloading of the resistor by a normally closed contact free of potential（NCC）．
Connections pls．look at picture 1a）

1b）with thermal overload relay（FGFT）

An eventual overload of the resistor is monitored by the thermal overload relay which is mounted in the attached terminal box．This is accomplished by NCC and NOC contacts．Also for signalling high short time peak power．
Connections pls．look at picture 1b）
Pic．1a）
P1b）

2．Disconnecting and signalling！

with FRIZLEN DC－POWERSWITCH （FGFX）up to 850 VDC up to 40 A

This type series with integrated overload switch in the attached terminal box is able to protect the integrated resistor from constant overload and from too high short time peak power，e．g．caused by a false operational mode or a fault by an short circuited chopper transistor．
This option for protection not only signals the hardware default，it switches off the object／the resistor absolutely reliable！ Possible damage in the environment by overheating and burning are effectively avoided．
After a successful fault clearance the DC－ Powerswitch can be switched on like a normal automatic cutout．

Connections pls．look at picture

1，0－ 22 kW with 2 terminals

Decision matrix

type properties	FGFG	FGFK	$\begin{aligned} & \text { FGF } \\ & \text { KQ } \end{aligned}$	FGFL	$\begin{gathered} \text { FGF } \\ \text { LQ } \end{gathered}$	FGFT	FGFX
with temperature－ switch（TS）			X		X		
thermal overload relay （up to max．80 A rated current）						X	
with FRIZLEN DC－ POWERSWITCH up to 40 A							X
terminals in attached terminal box（with cable gland）	X	X	X			X	X
terminals inside the unit （without cable－gland）				X	X		
flat terminals up to max． 35 A	X	X	X	X	X		
device terminals up to max． 60 A		X	X				
bolt terminals M6 up to max． 60 A		X	X	X	X		
bolt terminals M8 up to max． 115 A		X	X	X	X		
PA cage clamp terminals up to max． 30 A		X	X				

Electrical and mechanical data

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ```
Types
FGFG,
FGFK, FGFKQ,
FGFL, FGFLQ,
FGFT, FGFX

``` & power in kW at \(40^{\circ} \mathrm{C}\) and 100\％ DCF & \multicolumn{2}{|l|}{Production Range \(\Omega\)－value} & max． number of laminas LBS6 type & A & mens & in mm

C2
（2） & \[
\begin{aligned}
& \text { C3 } \\
& \text { (3) }
\end{aligned}
\] & \begin{tabular}{l}
max． \\
weight \\
in kg
\end{tabular} \\
\hline FGF．．61008．． & 4，0 & 0，3 & 160 & 8 & 270 & 295 & 330 & 355 & 7，5 \\
\hline FGF．．61010．． & 5，0 & 0，3 & 128 & 10 & 270 & 295 & 330 & 355 & 8，5 \\
\hline FGF．．61112．． & 6，0 & 0，4 & 107 & 12 & 270 & 295 & 330 & 355 & 9，5 \\
\hline FGF．．61114．． & 7，0 & 0，5 & 92 & 14 & 370 & 395 & 430 & 455 & 12 \\
\hline FGF．．61216．． & 8，0 & 0，6 & 80 & 16 & 370 & 395 & 430 & 455 & 13 \\
\hline FGF．．61218．． & 9，0 & 0，6 & 72 & 18 & 570 & 595 & 630 & 655 & 18 \\
\hline FGF．．61221．． & 10，5 & 0，8 & 61 & 21 & 570 & 595 & 630 & 655 & 20 \\
\hline FGF．．61224．． & 12，0 & 0，9 & 54 & 24 & 570 & 595 & 630 & 655 & 22 \\
\hline FGF．．61327．． & 13，5 & 1，0 & 48 & 27 & 770 & 795 & 830 & 855 & 29 \\
\hline FGF．．61330．． & 15，0 & 1，1 & 43 & 30 & 770 & 795 & 830 & 855 & 31 \\
\hline FGF．．61334．． & 17，0 & 1，2 & 38 & 34 & 770 & 795 & 830 & 855 & 33 \\
\hline FGF．．61438．． & 19，0 & 1，4 & 34 & 38 & 970 & 995 & 1030 & 1055 & 40 \\
\hline FGF．．61442．． & 21，0 & 1，5 & 31 & 42 & 970 & 995 & 1030 & 1055 & 42 \\
\hline FGF．．61444．． & 22，0 & 1，6 & 29 & 44 & 970 & 995 & 1030 & 1055 & 44 \\
\hline
\end{tabular}

This table represents only a selection of our program．All number of laminas between 2 pcs． （ \(1,0 \mathrm{~kW}\) ）and 44 pcs ．\((22 \mathrm{~kW}\) ）corresponding to our types are available．
Type code and selection of units see on this pages T527E and T528E．
e．g．： 2 device terminals＋temperature switch（ 2 terminals）＝＞FGFKQ 61．．． 04
（2）dim．C2 is only valid for type FGFG（dimension sheet 15M0057）
（3）dim．C3 is only valid for types FGFK，FGFX and FGFT（dim．sheet 15M0768） for type FGFL dim．„B＂is valid，as design without term．box（dim．sheet 15M0767）


N

Type series FSL 16.. up to FSL 20. Type series FAL 16.. up to FAL 20..


\section*{Technologies}
- continuous dissipation up to \(4,5 \mathrm{~kW}\)
- wall mounting only (laying mounting not allowable!)
- adjustable clips possible
- up to 12 terminals possible
- temperature switch is not provided

The resistance value can be changed by means of adjustable clips. The number of available adjustable clips depends on type and wiring

Intermediate values of power can be achieved by variation of the number of laminas. (For three-phase version a multiple of 3)

The number of terminals is determined by position 5 and 6 of the type.
(see dimensioning example)
You will find further details for short term dissipation in chapter Technical Details, pages T513-T517.

\section*{Application}
- Braking resistor for medium power ratings and medium ohmic values in degree of protection IP 23 and IP 20
- starting and regulating resistor for three-phase slip-ring rotor motors
- three-phase load resistor with partial resistances

\section*{Special design}
- version of low induction and of low noise (support straps made of aluminium or stainless steel)
- \(\quad\) version with degree of protection IP 00, type series FKL 16.. up to FKL 20.. . The dimensions are identical with FAL ..
- terminals BK M6 (max. 6 pcs.) and/or. M8 (max. 3 pcs.)

\section*{\(0,25-4,5 \mathrm{~kW}\) with up to 12 terminals}


FSL... Wirewound lamina type fixed resistor, degree of protection IP 23 with weatherproof roof
FAL... Wirewound lamina type fixed resistor, degree of protection IP 20 without weatherproof roof

In zinc plated steel sheet enclosure with up to 12 terminals and several holes for cable glands, that are closed by rubber sockets.

\section*{Electrical and mechanical data}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Type \\
FSL.
\end{tabular} & power in kW at \(40^{\circ} \mathrm{C}\) and 100\%DCF & \multicolumn{2}{|l|}{production range \(\Omega\)-value (total resistance)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { number } \\
\text { of } \\
\text { lamina } \\
\text { and } \\
\text { size }
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
drill holes for cable entry point \\
M
\end{tabular}} & \multirow[t]{2}{*}{maximum \# of terminals up to 35A} \\
\hline & & from & up to & & & \\
\hline F. L 1602.. & 0,250 & 0,23 & 40 & 2 L2 & \(1 \mathrm{PG} 9+1 \mathrm{PG16}\) & 7 \\
\hline F. L 1603.. & 0,375 & 0,35 & 60 & 3 L 2 & 1PG9 + 1PG16 & 7 \\
\hline F. L 1704.. & 0,50 & 0,46 & 80 & 4 L2 & \(1 \mathrm{PG} 9+1 \mathrm{PG16}\) & 7 \\
\hline F. L 1706.. & 0,75 & 0,69 & 120 & 6 L2 & \(1 \mathrm{PG} 9+1 \mathrm{PG} 16\) & 7 \\
\hline F. L 1805.. & 1,00 & 0,90 & 150 & 5 L3 & 3PG13,5 + 1PG16 & 10 \\
\hline F. L 1806.. & 1,20 & 1,10 & 180 & 6 L3 & 3PG13,5 + 1PG16 & 10 \\
\hline F. L 1906.. & 1,50 & 1,50 & 250 & 6 L4 & & 12 \\
\hline F. L 1909.. & 2,25 & 2,20 & 380 & 9 L4 & \begin{tabular}{l}
1PG13,5 + 1PG16 \\
+3 PG21
\end{tabular} & 12 \\
\hline F. L 1912.. & 3,00 & 3,00 & 510 & 12 L 4 & & 12 \\
\hline F. L 2015.. & 3,75 & 3,70 & 640 & 15 L4 & 1PG13,5 + 1PG16 & 12 \\
\hline F. L 2018.. & 4,50 & 4,40 & 770 & 18 L4 & + 3PG21 & 12 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{10}{|c|}{ dimension in mm } \\
\begin{tabular}{l} 
FSL... \\
FAL...
\end{tabular} & A & B & \(\varnothing\) C & D & E & F & \begin{tabular}{c} 
Gax. \\
only FSL
\end{tabular} & L & \begin{tabular}{c} 
weight in \\
kg
\end{tabular} \\
\hline F. L 16.. & 155 & 210 & 5,8 & 190 & 235 & 130 & 270 & 12,5 & 3,0 \\
\hline F. L 17.. & 155 & 210 & 5,8 & 190 & 235 & 180 & 270 & 12,5 & 5,0 \\
\hline F. L 18.. & 165 & 270 & 5,8 & 230 & 295 & 182 & 335 & 12,5 & 7,0 \\
\hline F. L 19.. & 220 & 370 & 8,5 & 290 & 410 & 200 & 480 & 18 & 15 \\
\hline F. L 20.. & 220 & 370 & 8,5 & 290 & 410 & 335 & 480 & 18 & 25 \\
\hline
\end{tabular}


\section*{Example of dimensioning and selection of a specific unit:}

Three-phase load resistor \(3 \times 1,5 \mathrm{~kW}=4,5 \mathrm{~kW}\); for \(3 \times 230 / 400 \mathrm{~V} ; 50 \mathrm{~Hz} ; 3 \times 6,6 \mathrm{~A}\), \(3 \times 35 \Omega\); wired on 3 flat terminals 35 A. Star point in the resistor.
Selected: FSL 201803-3x 35 with continuous dissipation 4,5 kW


Type series FSL 70．．up to FSL 75. Type series FAL 70．．up to FAL 75.

\section*{Technologies}
－continuous dissipation up to 30 kW
－for floor mounting
－max． 30 flat terminals up to 35 A
－max． 19 bolt terminals up to 115 A
－adjustable clips possible
－temperature switch is not provided

Intermediate values of power can be achieved by variation of the number of laminas．（For three－phase version a multiple of 3）

Various application are possible because of the high number of available terminals．The number of terminals is determined by position 5 and 6 of the type．
（see dimensioning example）
Optionally it is also possible to make the resistance value adjustable by adjustable clips．The number of available adjustable clips depends on type and wiring

You will find further details for short term dissipation in chapter Technical Details， pages T513E－T517E．

\section*{Application}
－Braking resistor for medium power ratings and medium ohmic values in degree of protection IP 23 and IP 20
－starting and regulating resistor for three－phase slip－ring rotor motors
－three－phase load resistor with partial resistor

\section*{Special design}
－version of low induction and of low noise（support straps made of aluminium or stainless steel）
－version with higher number of terminals，higher rating or different degree of protection on request
－console for wall mounting is available

\section*{2，5－30 kW，with up to 30 terminals}

\section*{23}

\section*{20}


FSL．．．Wirewound lamina type fixed resistor，degree of protection IP 23 with weatherproof roof
FAL．．．Wirewound lamina type fixed resistor，degree of protection IP 20 without weatherproof roof
in zinc plated steel sheet enclosure with up to 30 terminals and cable entry strip． The terminals are accessible after the removal of the cover．

\section*{Electrical and mechanical data}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Type & power in kW at \(40^{\circ} \mathrm{C}\) and 100\％ & \multicolumn{2}{|l|}{production range \(\Omega\)－value （total resistance）} & max． number of laminas and size & \multicolumn{3}{|l|}{\begin{tabular}{l}
maximum \＃of terminals in dependency of the size FK－flat terminals \\
BK－bolt terminals
\end{tabular}} \\
\hline \[
\begin{aligned}
& \text { FSL } \\
& \text { FAL } \\
& \hline
\end{aligned}
\] & DCF & from & up to & & \[
\begin{gathered}
\text { FK } \\
35 \mathrm{~A}
\end{gathered}
\] & \[
\begin{gathered}
\text { BK M6 } \\
60 \mathrm{~A} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { BK M8 } \\
& 115 \mathrm{~A}
\end{aligned}
\] \\
\hline F．L 7015．． & 3，75 & 0，3 & 150 & 15 L4 & 12 & 9 & 7 \\
\hline F．L 7124．． & 6，0 & 0，5 & 100 & 24 L4 & 18 & 14 & 11 \\
\hline F．L 7236．． & 9，0 & 0，7 & 64 & 36 L4 & 24 & 19 & 16 \\
\hline F．L 7330．． & 13 & 1，0 & 42 & 30 L7 & 21 & 15 & 14 \\
\hline F．L 7445．． & 19 & 1，5 & 30 & 45 L 7 & 30 & 21 & 19 \\
\hline F．L 7569．． & 30 & 2，3 & 19 & 69 L7 & 30 & 21 & 19 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{9}{|c|}{ dimension in mm } & max． \\
& A & B & C & \(\varnothing \mathrm{D}\) & E & F & \begin{tabular}{c} 
G \\
only IP23
\end{tabular} & \begin{tabular}{c} 
weight in \\
kg
\end{tabular} \\
\hline F．L 7015．． & 500 & 300 & 250 & 8,5 & 300 & 270 & 560 & 25 \\
\hline F．L 7124．． & 500 & 300 & 250 & 8,5 & 430 & 400 & 560 & 30 \\
\hline F．L 7236．． & 500 & 300 & 250 & 8,5 & 600 & 570 & 560 & 40 \\
\hline F．L 7330．． & 800 & 390 & 330 & 10,5 & 505 & 465 & 870 & 60 \\
\hline F．L 7445．． & 800 & 390 & 330 & 10,5 & 685 & 645 & 870 & 85 \\
\hline F．L 7569．． & 800 & 550 & 490 & 10,5 & 685 & 645 & 870 & 130 \\
\hline
\end{tabular}


\section*{Example of dimensioning and selection of a specific unit：}

Three－phase load resistor \(3 \times 2,5 \mathrm{~kW}=7,5 \mathrm{~kW}\) ；for \(3 \times 230 / 400 \mathrm{~V} ; 50 \mathrm{~Hz} ; 3 \times 11 \mathrm{~A}\) ， \(3 \times 21 \Omega\) ；wired on 3 flat terminals 35 A ．Star point in the resistor．
Selected：FSL 723603－3x 21 with continuous dissipation 8，6 kW
FSL \(\frac{72}{1} \frac{36}{\square} \frac{03}{\square}\)





number of terminals
number of laminas
nize
－type series－degree of protection IP23

Type series FAV 6../ FSV 6..


\section*{Technologies}
- constant ohmic value over a large temperature range
- power ventilated by integrated 230/400 V; 50 Hz axial flow fan
- for floor-level location
- continuous dissipation up to 250 kW
- paralleling of 2 or more units for even higher powers
- for outdoor location (FSV..)

The necessary terminals are mounted on a terminal strip in the lower part of the device and are accessible after demounting a cover,

By the use of lamina-elements with a typical power of 950 W or 1380 W per element with forced-ventilation, we cover a power range of up to 250 kW per unit. Constant ohmic value over a large temperature range of +/- \(1 \%\) with maximum load. Higher power ratings can be achieved by parallel connection of several devices.

\section*{Application}

An important application is the use as a temperature independent load resistor, which means a constant ohmic value under maximum load for exact test and laboratory equipment. Protection degree IP 20 is sufficient for installing in laboratory or factory rooms, IP 23 is necessary for outdoor location.

\section*{Special design}
- with integrated switching devices in an attached switch cabinet to control the partial resistors
- with 2 temperature switches wired on terminals
- special voltages of fan
- mobile, for test area by rollers
\(75-250 \mathrm{~kW}\) with several terminals


FAV... lamina type fixed resistor in protection degree IP 20, without weatherproof roof, air outlet on top
FSV... lamina type fixed resistor in protection degree IP 23, with weatherproof roof, for outdoor location, air outlet at the side via air deflectors in the upper area
In completely closed zinc sheet enclosure with protective grid at the bottom and powered ventilation by an integrated ventilator. With air flow monitoring by wind indicator relay. Ceramic insulated flat or bolt terminals of 35A up to 400A in variable combinations available.

\section*{Electrical and mechanical data}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type FAV 6. FSV 6.} & power in & maximum & \multicolumn{6}{|c|}{dimension in mm} & \multirow[t]{2}{*}{\begin{tabular}{l}
max. \\
weight \\
in kg
\end{tabular}} \\
\hline & DCF & & A & B & C & D & E & F & \\
\hline F.V 68580.. & 75 & 80 L7 & 1200 & 1240 & 800 & 700 & 795 & 770 & 142 \\
\hline F.V 68680.. & 110 & 80 L10 & 1500 & 1540 & 800 & 700 & 795 & 770 & 185 \\
\hline F.V 68780.. & 170 & 180 L7 & 1435 & 1485 & 955 & 850 & 995 & 970 & 265 \\
\hline F.V 68880.. & 250 & 180 L10 & 1700 & 1750 & 955 & 850 & 995 & 970 & 370 \\
\hline
\end{tabular}

This table represents only the maximum number of lamina-resistors for the specific size of unit and the corresponding maximum typical power. Many specifications depending on customer requirement are possible.


\section*{T 6OO - DIEROBUSTEN / THE ROBUST ONES}


\section*{Stahlgitterfestwiderstände \\ 0,5 bis 250 Kilowatt}

Stahlgitterfestwiderstände als Einzelelemente, die einbaufähig sind und daraus aufgebaute Stahlgitterfestwiderstandsgeräte in verschiedenen Schutz- und Befestigungsarten.

■ Mit und ohne Abdeckung mit Anschluss am Widerstand oder an Klemmen in Schutzart IPOO, IP2O oder IP23
- Für Wand- oder Bodenmontage oder für Kanaleinbau

■ Thermisches Überstromrelais, Temperaturschalter oder FRIZLEN DC-Powerswitch für thermische Überwachung und Abschaltung
■ Fremdbelüftet für große Leistungen, Parallelschaltung von Geräten für Leistungen größer 250 kW

\section*{Steel-grid fiked resistors}

0,5 up to 250 Kilowatt

Steel-grid fixed resistors as individual components, that can be integrated into other units and composed to steel-grid fixed resistor units in different degrees of protection and mounting types.
\(\square\) With or without cover, connection direct to the resistor or on terminals in degree of protection IPOO, IP2O or IP23
\(\square\) For horizontal and vertical mounting and for integration into exhaust air installations
- Thermal overload relay, temperature switch or FRIZLEN DC-Powerswitch for thermal monitoring and switch off
\(\square\) Forced ventilation for higher dissipation, switching in parallel of units for dissipation > 250 kW

Contents

IZ ＝N
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \[
\begin{gathered}
\hline \text { S1- } \\
\text { S30 a. } \\
\text { S301G- } \\
\text { S321G }
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { FE. } \\
& 31 . .
\end{aligned}
\] & FKE． 31．． & \begin{tabular}{l}
FGF．． \\
31．．
\end{tabular} & \begin{tabular}{l}
FGHD． \\
31．．
\end{tabular} & \begin{tabular}{l}
FK． \\
3．．
\end{tabular} & \begin{tabular}{l}
FKK． \\
3．．
\end{tabular} & \[
\begin{gathered}
\hline \text { FA./ } \\
\text { FS. } \\
3 . .
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { FS } \\
319 . . \\
-- \\
320 . .
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { F.V } \\
& 3 . .
\end{aligned}
\] \\
\hline & & \[
\begin{aligned}
& \hline 621 \mathrm{E} \\
& 632 \mathrm{E}
\end{aligned}
\] & 622E & 623E & \[
\begin{aligned}
& \hline 624 \mathrm{E} \\
& 625 \mathrm{E}
\end{aligned}
\] & 626E & 627E & 628E & 629E & 630E & 631E \\
\hline power from［kW］ & & 0，5 & 1，0 & 1，0 & 1，0 & 1，0 & 1，5 & 5，0 & 1，5 & 0，5 & 70 \\
\hline power up to［kW］ & & 0，5 & 22 & 22 & 22 & 12 & 66 & 250 & 66 & 5，0 & 250 \\
\hline max．number of terminals （without temperature switch） & & － & － & － & 2 & 2 & 40 & 6 & 40 & 2 & 40 \\
\hline protection degree IP00 & \[
\begin{aligned}
& \hline \text { IP } \\
& 00
\end{aligned}
\] & X & X & X & & & X & X & & & \\
\hline protection degree IP20－if mounted on an appropriate surface & \[
20^{(1)}
\] & & & & X & X & & & & & \\
\hline protection degree IP20 & \[
20
\] & & & & & & & & X & & X \\
\hline protection degree IP23 & \[
\begin{aligned}
& \text { IP } \\
& 23
\end{aligned}
\] & & & & & & & & X & X & X \\
\hline horizontal mounting & \[
\frac{\text { 冊高 }}{}
\] & & X & X & & & & & & & \\
\hline vertical mounting & & & X & X & & & & & & & \\
\hline horizontal mounting & : : & & & & X & & X & X & X & & X \\
\hline vertical mounting & 猪 & & & & X & X & & X & & X & \\
\hline temperature switch（optional） & \[
{ }^{9} L_{5}
\] & & X & X & X & X & X & X & X & X & \\
\hline thermal overload relay & & & & & X & & & & & & \\
\hline FRIZLEN DC－POWERSWITCH &  & & & & X & & & & & & \\
\hline Anschluss an Fahnen am Widerstand & \[
\pm \sqrt{[ }
\] & X & X & X & & & & & & & \\
\hline integration possible & E & X & X & X & & X & X & & & & \\
\hline forced ventilation & \[
162
\] & & & & & & & & & & X \\
\hline with ciUuS Recognition & & X & X & X & X & X & X & & X & & \\
\hline
\end{tabular}

Rights for improvements and modifications of our products reserved． Modifications，errors and misprints justify no claim for damages． We refer to our terms of sales and delivery．

\section*{Technical details}

\section*{Construction \\ Steel-grid fixed resistor elements \\ Type series S}

Spectrum

Resistance values/ Production tolerance/ Temperature dependency

Energy absorption capacity/
Time constant

Resistor blocks
Type series FE

\author{
Resistors \\ Type series FK; FGF; FA; FS
}

\section*{Degrees of protection}


Our steel-grid fixed resistor elements (SG) are made out of chromium alloyed and heat- resistant steel sheets of alloy X10CrAl13 (material \# 1.4724), which has a high specific resistance value of \(0,75 \Omega \times \mathrm{xm}^{2} / \mathrm{m}\). Both long sides of the SG are punched with slots in a meander-shaped current path. The ohmic value depends on the width of the straps. They are mechanically reinforced by strips of stainless steel with inlays of mica.

By the use of SG with a big ohmic range of \(0,022 \Omega\) to \(5,6 \Omega\) and a typical power of 500 W per steel-grid we can achieve a wide range of resistance and power values by variation of steel-grid number and ohmic value.

Steel-grid fixed resistor elements have a smaller dependence of the resistance value on the steel-grid temperature than cast iron resistors, however a noticeably higher one than wire-wound resistors. The resistance value increases approx. \(+15 \%\) between cold and operating temperature.
The given rated resistance values of each individual SG in the table on page T621E are about \(8 \%\) higher than the resistance value in cold condition and about \(7 \%\) below the resistance value at the operating temperature.
The production tolerance is \(\pm 10 \%\).

The energy absorption capacity varies per SG at a temperature increase of 300 K in dependancy of the ohmic value between 50 and 70 kWs .
The average thermal time constant is 100 s .

If larger power ratings are to be obtained, several SG are assembled by M12-thru bolts and isolating mica tubes to a resistance block. The isolation between 2 neighbouring SG is effected by glazed ceramic rolls, the current conduction by stainless steel rolls. The resistance block is prestressed by cup springs and so held under constant contact pressure. In addition to that individually screwed conductor rolls between two neighbouring SG are possible. A resistor block may consist of identical SG or of different SG with lugs as taps.

In order to facilitate the integration, and/or to provide different degrees of protection, various kinds of enclosures are used. The enclosures are manufactured out of hotgalvanized and perforated steel sheet and therefore are well protected against corrosion. Also an extra varnish in RAL 7032 is available with an additional charge as well as enclosures in stainless steel (alloy 1.4301/AISI 304).

Correlation of type series and degrees of protection according to EN 60529 and/or DIN VDE 0470 part 1
\begin{tabular}{|c|c|c|c|}
\hline Type series & Degree of protection & First digit degree of protection against access \& solid foreign objects & Second digit degree of protection against water \\
\hline \[
\begin{array}{|l|}
\hline \text { S } \\
\text { FE } \\
\text { FK.. } \\
\hline
\end{array}
\] & IP 00 & Non-protected - i.e. depending upon integration the user must provide a protection & Non-protected \\
\hline FGF.. & IP \(20^{\text {® }}\) & \multirow[t]{3}{*}{Protected against access to hazardous parts with a finger and against solid foreign objects of \(12,5 \mathrm{~mm} \varnothing\) and greater.} & Non-protected \\
\hline FA.. FAV.. & IP 20 & & Non-protected \\
\hline FS..
FSV.. & IP 23 & & Protected against spraying water. Water sprayed at an angle up to \(60^{\circ}\) on either side of the vertical shall have no harmful effects. (for outdoor location) \\
\hline
\end{tabular}

\footnotetext{
 protection IP 20 or higher
}

\section*{UL-recognition c \({ }^{-1}\) us}

\section*{Excess current protection}


\section*{Excess temperature} protection


All our power resistors with degree of protection IP \(20^{\circledR}\) or higher correspond to safety class system I, i.e. we provide connections for protective earth conductors according to EN 61140.

Devices with degree of protection IP 20 or higher correspond to the CE low voltage directive.
Power resistors being passive electronical or electrical units are not affected by the specific EMC standards. They do not produce any interfering radiations nor are they affected.

Air and creepage distances are rated according to IEC 664 (DIN EN 0110 part 1) for the overvoltage category III and degree of pollution 3 for grounded three-phase mains supplies up to \(3 \times 500 \mathrm{~V}\). Testing voltage 2.5 kV AC.
These data are valid for all devices that are connected to mains voltage and derived voltages, as for example the intermediate circuit voltage of frequency converters.
Do not conclude from the calculated relation between the rated power and the maximum producible ohmic value to the rated voltage!

All important type series do have an UL- recognition both for the American and for the Canadian market. The devices were certified according to UL 508 under the number E212934. This recognition is the same as a recognition according to CSA C22.2 No.14. For further information please check the UL-flyer. (Please ask for it or visit us at www.frizlen.com)

A protection of the resistors against overloading or excess temperature - as demanded in standards - can be realized with the help of a thermal overload relay provided by the user. The set current must correspond to the rated current of the resistor, that is calculated according to continuous duty power and resistance value corresponding to Ohm's law (formula: see "terminal details" p. T618E).

Concerning the series FGFT the thermal overload relay is a component of the device - with exceeding of the rated current a signal contact is released. There will not be a disconnection of the resistor. Resetting by hand.

Another kind of the excess temperature monitoring, particularly suited for long-term overloading, is the equipment with a temperature switch. In IP 20/23-resistor devices it is wired on terminals, in IP 00 resistors the switch is directly connectable and releases a signal contact, when the set temperature is exceeded. There will not be a disconnection of the resistor. See type series FEQ / FKEQ / FGF.Q / FKQ / FAQ / FSQ / F.VQ

You can inform yourselfs about function and restrictions by our data sheet „Tripping of monitoring devices".
We can send it to you on request.

Intrinsically safe version with Frizlen DC-POWERSWITCH


Contact rating

Starting up

Storage temperature/ Operation temperature/ Installation altitude

Integrated overload switch for a maximum of 850 VDC to protect the resistor. It protects the integrated resistor against constant overload and against too high short time peak power, e.g. caused by a false operational mode or a fault by an short circuited chopper transistor. Possible damage in the environment by overheating and burning are effectively avoided.
So you receive an intrinsically safe resistor protection degree even for IP20 \({ }^{(1}\). The FRIZLEN DC-POWERSWITCH can also be integrated in the switch cabinet.
After a successful fault clearance the DC-POWERSWITCH can be switched on like a normal automatic cutout.
We can send you more technical details and characteristics on request.

Attention: Frizlen DC-POWERSWITCH are only suited for monitoring and disconnecting from DC-voltage with pure resistive load (DC1) up to 850 VDC.

Contact ratings of the signal contacts of temperature switches and thermal overload relays:
- 2 A / 24 VDC (DC11)
- 2 A / 230 VAC (AC11)

Contact ratings of the signal contacts of the DC-POWERSWITCH:
- 5 A / 24 VDC (DC11)
- \(10 \mathrm{~A} / 230\) VAC (AC11)

Resistors in industry version.
On first operation during commissioning, the steelgrid resistors will produce some smoke. This is due to the lubricant used in the manufacturing process of the resistor element.

Storage temperature: \(-40^{\circ} \mathrm{C}\) to \(80^{\circ} \mathrm{C}\)
Operation temperature: \(-30^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\). If the ambient temperature is higher than \(40^{\circ} \mathrm{C}\), you have to decrease the continuous dissipation by \(4 \%\) per 10 K temperature rise!
Installation altitude: 2000 m above sea level, you have to decrease the continuous dissipation for \(10 \%\) per 1000 m altitude, maximum altitude 5000 m above sea level

Restrictions are to be made for the type series FGFT. and FGFX. because of the built-in monitoring device. Operation temperature: \(-20^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\).

The given typical power values are valid for \(100 \%\) duty cycle factor (DCF) (continuous dissipation) under the following conditions:
- temperature rise of 200 K at the surface of fixed resistor enclosures (degree of protection> IP00)
- temperature rise of 300 K at the surface of fixed resistor elements (degree of protection IP00).
- unhindered access of cooling air
- unhindered diverting of warmed up air (mind a minimum separation distance of approx. 200 mm to neighbouring components/walls and of approx. 500 mm to components above/ceiling)

Since electrical energy is converted into heat, heating up of the exhaust air and of the enclosure at the air outlet is inevitable.
The highest temperature with typical power may be maximum \(200^{\circ} \mathrm{C}\) above the ambient temperature. Since the cooling of the devices is accomplished by convection and/or forced ventilation (series FAV/ FSV), the above mentioned aspects have absolutely to be considered.

In cases of insufficient cooling or false mounting the resistor or the surrounding devices units could be overheated or ruined. 12 \(\geq\) E

Depending upon use it can be possible to increase the continuous dissipation of the resistors, if higher temperatures are accepted. With an increase of e.g. of \(130 \%\) of the typical power you will have a rise in temperature of 350 K at the surface of the resistor. In other cases of applications the continuous dissipation must be reduced, for example with temperature sensitive devices in the surrounding. The dependence between temperature rise and actual continuous dissipation is shown in the diagram below.

Excess temperature in dependence of continuous dissipation


\section*{Normal operation range (up to 130\%):}

Recommended operation range for maximum product life and failure free operation
Allowable threshold (up to 160\%):
Allowable operation range, danger of shorter product life and higher failure probability

\section*{Unallowable operation range (more than 160\%):}

Danger of excessive heat and destruction of resistor and neighbouring components

Short time dissipation/
Total cycle time/ Duty cycle factor(DCF)

Overload factor(OLF)

\section*{Calculation example}
given:
wanted: continuous dissipation

At many applications resistors are not loaded in continuous but in short time operation. In the following you will find indications, how to calculate the allowable short time dissipation with the help of the duty cycle factor (DCF) and the overload factor (OLF). If the DCF factor is not known, it can be calculated as follows:

Duty cycle factor \((D C F)=\frac{\text { Switch on time }\left(t_{\text {on }}\right)}{\text { Total cycle time }}\)

\[
D C F_{1}=\frac{48 s}{120 s}=0,4=40 \% \quad D C F_{2}=\frac{7,5 s}{30 s}=0,25=25 \%
\]

Warning: The total cycle time may be maximum 120 s shorter total cycle times are possible. The total cycle times for motors are mostly higher than 120 s

By comparison of the known DCF-factor with the following diagram or table you can work out the overload factor (OLF) and/or the continuous and the short time dissipation.

Overload factor (OLF) in dependence of duty cycle factor (DCF)
(Total cycle time \(=120 \mathrm{~s}\) )


The continuous and the short time dissipation can be calculated as follows:
\[
\begin{aligned}
& \text { Short time dissipation }=\text { Continuous dissipation } \times \text { OLF } \\
& \text { Continuous dissipation }=\frac{\text { Short time dissipation }}{\text { Overload factor }(\text { OLF })}
\end{aligned}
\]
- Resistor with a short time dissipation of 100 kW for 48 s and a total cycle time of 120s
- The duty cycle factor (DCF) is \(48 \mathrm{~s}: 120 \mathrm{~s} \times 100 \%=40 \%\)
- Overload factor (OLF) for 40\% DCF, according to table it is 2,2
- The continuous dissipation is \(100 \mathrm{~kW}: 2,2=45,5 \mathrm{~kW}\);
\(\Rightarrow\) You need a resistor with a continuous dissipation of at least \(45,5 \mathrm{~kW}\) !

Terminal details/ Monitoring devices/

Cross section


Rated current and cross section of terminals and monitoring types.
\begin{tabular}{|c|c|c|c|c|}
\hline Type & abbreviation & rated current in A with 100\% DCF & rated current in A with 40\% DCF & maximum cross section \\
\hline porcelain terminal & PK & 16 & & up to \(2,5 \mathrm{~mm}^{2}\) \\
\hline ceramic flat terminal & FK & 35 & 44 & 2,5-10 mm \({ }^{2}\) \\
\hline \multirow[t]{2}{*}{device terminal out of Polyamid (PA)} & G 5 & 30 & 38 & \[
\begin{gathered}
0,5-2,5(4) \mathrm{mm}^{2} \\
\text { AWG } 24-12 \\
\hline
\end{gathered}
\] \\
\hline & G 10 & 60 & 75 & \[
\begin{gathered}
0,5-10(16) \mathrm{mm}^{2} \\
\text { AWG } 20-6 \\
\hline
\end{gathered}
\] \\
\hline \multirow{4}{*}{bolt terminals out of ceramic} & BK M6 & 60 & 75 & \multirow[b]{4}{*}{cross section depending on lug size with corresponding hole} \\
\hline & BK M8 & 115 & 143 & \\
\hline & BK M10 & 220 & 287 & \\
\hline & BK M12 & 400 & 536 & \\
\hline \multirow[t]{2}{*}{feed-through terminal out of PA} & HDFK4 & 30 & 38 & up to \(4,0 \mathrm{~mm}^{2}\); AWG 24 12 \\
\hline & HDFK10-HV & 65 & 82 & up to \(10 \mathrm{~mm}^{2}\); AWG 20-6 \\
\hline \multirow[t]{2}{*}{cage clamp terminal out of PA} & ST2,5 & 20 & 25 & \[
\begin{gathered}
\text { up to } 2,5 \mathrm{~mm}^{2} \text {; AWG } 26 \text { - } \\
12
\end{gathered}
\] \\
\hline & ST 4 & 30 & 38 & \[
\text { up to } 4,0 \mathrm{~mm}^{2} ; \text { AWG } 20-
\] \\
\hline \multirow[t]{2}{*}{thermal overload relay} & signal contact & 2 & - & up to \(2,5 \mathrm{~mm}^{2}\); AWG 1612 \\
\hline & main connection & bis 13/24/80 & 17/30/100 & 2,5/4/25 mm²; AWG \(20-6\) \\
\hline \multirow[t]{2}{*}{DC-POWERSWITCH FPS} & signal contact & 10 & - &  \\
\hline & main connection & 40 & 50 & up to \(16 \mathrm{~mm}^{2}\); AWG 4 \\
\hline
\end{tabular}

The values in the brackets are valid for solid conductor or single-wired.
The rated current is calculated in each case due to the Ohm`s law as follows:
\[
I=\sqrt{\frac{P}{R}} \quad \begin{aligned}
& \text { whereas } \\
& P \text { is the power of the resistor and } \\
& R \text { ist he value of the resistance }
\end{aligned}
\]

If terminals are required, the connections are wired by means of flexible, heat resistant, silicone-insulated wire on a terminal strip that is located in the lower and/or front part of the equipment within the area of the entering cooling air. If the wiring is accomplished by the user, make sure that a heat resistant wire is used.
For the UL-versions we use wires with UL-admission (other wire-isolations on request).
For the type series FK /FA /FS 3.. and for F.V 38.. there is an undrilled cable entry strip in the lower part. It can be provided by the user with appropriate drillings for cable glands as strain relief.

Please mind the mounting indications in the corresponding type series! You will find these icons in the data sheets:

Allowable: On horizontal surfaces

Allowable: On vertical surfaces terminals at the bottom

Not allowable: On vertical/horizontal surfaces terminals at the top, left or right

Allowable: On vertical surfaces

Selection of Type series and dimension

Type code 1

Type code 2

The tables on the following data sheets contain a selection of the available equipment assemblies and/or the appropriate maximum assembly of the respective size of the device. Less steel-grids (SG) are possible.
For all type series, except for S, the following type codes are shown to explain the complete type designations.


Type series S represents individual components. You can see their complete type designation in the table on p . T621E.

Devices that are built according to UL standard are marked additionally with "U" at the last position in the sequence of letters- see type code 1 and the following example

\section*{Selection of devices/ \\ Example given:}

\section*{wanted:} resistor
- continuous power rating of the resistor: \(P=9,0 \mathrm{~kW}\)
- resistance value: \(\mathrm{R}=27 \Omega\)
- continuous current of the resistor: \(\mathrm{I}=18 \mathrm{~A}\)
- construction with terminals that are protected against contact
- degree of protection IP 20 (mounting on switch cabinet)
- with temperature switch (TS)
- design according to UL
- number of \(\mathrm{SG}=\) continuous power rating : power per \(\mathrm{SG}=9,0 \mathrm{~kW}: 0,5 \mathrm{~kW}=18 \mathrm{SG}\)
- selection of type series taken from survey on p. T612E
- possible type series: FGF..; FA
- with mounting on a switch cabinet - means on a surface of degree of protection IP 20 you can choose the smaller and low priced alternative FGF, compared to type series FA. If the terminals should be in an attached terminal box, type series FGFKQ is adequate, because of the necessary temperature switch (TS)
- with 18 SG you can select within enclosure size construction height 1 and width 2 (max. poss. 24 SG)
- construction according to UL508: add "U" to the type designation,
- complete type designation is FGFKQU 3121802-27 (with 2 device terminals up to 65 A ). Type description see p. T624Eff

\section*{wanted:}

\section*{selection of steel-grids:}

\section*{selection of products:}

\section*{Dimensioning example}

\section*{given:}
wanted:

\section*{selection of products:}

\section*{Braking resistor}
- Maximum intermediate circuit voltage 650 V :
\[
U_{z K}=650 \mathrm{~V}
\]
- Smallest allowable resistance value:
(from data sheet of frequency converter)
\[
R_{\text {min }}=25 \Omega
\]
- maximum allowable chopper current
- duty cycle factor for braking operation (corresponding to the application),
for a hoist drive e.g. 40 \% DCF referring to a total cycle time of 120 s
\(D C F=40 \%\)
- degree of protection IP 20 in fixed condition
- short time dissipation of the resistor with \(40 \% \mathrm{DCF} \quad P=\frac{U^{2}}{R}=\left(\frac{650 \mathrm{~V}^{2}}{25 \Omega}\right)=16,9 \mathrm{~kW}\)
- continuous dissipation \(=\) short time dissipation : overload factor (s. p. T616E)
- continuous dissipation \(=16,9 \mathrm{~kW}: 2,2=8,5 \mathrm{~kW}\)
- number of steel-grids = continuous dissipation : dissipation per SG
- number of steel-grids \(=8,5 \mathrm{~kW}: 0,5 \mathrm{~kW} \approx 17 \mathrm{SG}\)
- resistance value of a SG \(=R_{\text {min }}\) : SG-number \(=25 \Omega: 17=1,62 \Omega\)

The ohmic value should not be smaller than \(R_{\min }\) altogether, since otherwise the allowable chopper current is exceeded! SG selection of \(p\). T621E \(=10\) pieces \(\mathrm{S} 23-1,5 \Omega\) and 7 pieces \(\mathrm{S} 24-1.8 \Omega\) total ohmic value is \(27,6 \Omega\)
- With degree of protection IP 20 in fixed condition - series FGF..
- With 17 steel-grids - construction size 312 17..
- with 2 terminals up to 35 A , without temperature switch - type FGFG
- The complete type designation is FGFG 3121702 - 27.6 (s.p. T624Eff)

\section*{Load resistor}
- Rated voltage \(U\) of supply unit: \(U=3 \times 230 / 400 \mathrm{~V}\)
\(\begin{array}{llll}\text { - rated dissipation: } \quad P=15 \mathrm{~kW} & \text { - duty cycle factor: } & D C F=100 \% \\ \text { - star connection, star point in the unit } & \text { - degree of protection } & \text { IP } 23\end{array}\)
- rated current per phase with star connection:
\[
I_{N}=\frac{P_{N}}{\sqrt{3} \times U_{N}}=\left(\frac{15 \mathrm{~kW}}{\sqrt{3} \times 400 \mathrm{~V}}\right)=21,7 \mathrm{~A}
\]
- nominal value of resistance per phase with star connection:
\[
R_{\text {wanted }}=\frac{U_{N}}{\sqrt{3} \times I_{N}}=\left(\frac{400 \mathrm{~V}}{\sqrt{3} \times 21,7 \mathrm{~A}}\right)=
\]
- value of resistance in cold condition: \(\quad R_{\text {cold }}=0,95 \times R_{\text {wanted }}=0,95 \times 10,7 \Omega=\)

If the demanded rated dissipation is to be achieved at operating temperature in the range of the resistance tolerance, it is advisable to consider the value of resistance in cold condition.
\[
R_{\text {cold }}=0,95 \times R_{n}
\]
 Then you can make your selection of steel grid.
- Selection of steel-grids of \(p\). T620E by the rated current of 21,7 A: S \(21-1,0 \Omega\)
- number of SG per phase = value of resist. in cold condition: ohmic value per SG
- number of \(S G=10,2 \Omega: 1,0 \approx 10\) SG per phase -3 phases is \(30 \mathrm{~S} 21-1\)
- value of resistance in cold condition is therefore \(3 \times 10 \Omega\)
- resulting rated dissipation: \(3 \times 10 \mathrm{SG}\) per \(0,5 \mathrm{~kW}=15 \mathrm{~kW}\)
- with degree of protection IP 23 - series FS..
- with 30 steel-grid fixed resistors - size 313 30.. or 32230 .. (size 313.. is lower, size 322.. is narrower)
- with 3 terminals (star point in the unit) number of terminals ... 03 with 4 terminals (star point wired on 1 terminal) number of terminals ... 04
- The complete type designation is (low unit, star point in the unit)

FS \(3133003-3 \times 10,7\)
(type series FS s. p. T629E)

Steel-grid fixed resistor elements S 1 -S 30


\section*{Technologies}
- particularly flat design
- overload resistant
- continuous dissipation \(500 \mathrm{~W}^{(1)}\)
- energy absorption capacity with \(\Delta T=300 \mathrm{~K}\), from 50 up to 70 kWs
- integration possible

As accessories we deliver 1 or 2 lugs to each resistor element with connection screws M10 (S \(1-\mathrm{S} 10\) ) or M6 (S \(11-\mathrm{S}\) 30). Normally they are not fixed, we will fix them upon request.

We produce steel-grid fixed resistor elements in a wide range of resistance values of \(0,022 \Omega\) up to \(5,6 \Omega\) and a typical power of \(500 \mathrm{~W}^{\oplus}\) per grid.
The given nominal ohmic values are about \(8 \%\) above the value of cold condition and \(7 \%\) below the value of operating temperature. The production tolerance is \(\pm 10 \%\).

We achieve a wide range of resistance values and wattage rating by variation of number of steel-grids and resistance values.

Please consider the different designs and construction forms of the following series.

The indicated ratings are valid for an ambient temperature of max. \(40^{\circ} \mathrm{C}\) at sufficient ventilation. The indicated values for the duty cycle factor (\%DCF) are preferred values and refer to a maximum total cycle time of 120 s .

You will find further indications for dimensioning of a resistor for short time dissipation in chapter Technical Details pages T613E to T620E.

500 W for integration

\section*{C U US \\ IP
00 \\ E \\  \\ \begin{tabular}{l}
\(\square \vdots\) \\
\(\square i m h\) \\
\hline
\end{tabular}}

Steel-grid fixed resistor element, degree of protection IP 00, for integration into units. Connection at the resistor

\section*{Electrical and mechanical data}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \% DCF & 100 & 60 & 40 & 25 & 15 & 6 & \multirow[b]{3}{*}{recomm. connection screws...} \\
\hline typical power \({ }^{(1)}\) & [W] & 500 & 750 & 1100 & 1500 & 2000 & 3800 & \\
\hline type & \(\Omega\) & \multicolumn{6}{|l|}{Max. current in amp. with \(40^{\circ} \mathrm{C}\) UT and sufficient ventilation} & \\
\hline S 1-0,022 & 0,022 & 122 & 150 & 183 & 211 & 250 & 344 & M10 \\
\hline S 2-0,027 & 0,027 & 122 & 150 & 183 & 211 & 250 & 344 & M10 \\
\hline S 3-0,033 & 0,033 & 122 & 150 & 183 & 211 & 250 & 344 & M10 \\
\hline S 4-0,039 & 0,039 & 112 & 138 & 168 & 194 & 230 & 315 & M10 \\
\hline S 5-0,047 & 0,047 & 102 & 126 & 153 & 177 & 210 & 287 & M10 \\
\hline S 6-0,056 & 0,056 & 94 & 115 & 140 & 163 & 193 & 265 & M10 \\
\hline S 7-0,068 & 0,068 & 85 & 105 & 127 & 147 & 174 & 240 & M10 \\
\hline S 8-0,082 & 0,082 & 77 & 96 & 115 & 133 & 158 & 217 & M10 \\
\hline S 9-0,10 & 0,10 & 70 & 87 & 105 & 121 & 144 & 197 & M10 \\
\hline S 10-0,12 & 0,12 & 64 & 79 & 96 & 111 & 131 & 180 & M10 \\
\hline S 11-0,15 & 0,15 & 57 & 71 & 85 & 99 & 117 & 160 & M6 \\
\hline S 12-0,18 & 0,18 & 52 & 65 & 78 & 90 & 107 & 146 & M6 \\
\hline S 13-0,22 & 0,22 & 47 & 58 & 71 & 81 & 96 & 132 & M6 \\
\hline S 14-0,27 & 0,27 & 42 & 53 & 63 & 73 & 86 & 118 & M6 \\
\hline S 15-0,33 & 0,33 & 38 & 48 & 58 & 68 & 79 & 108 & M6 \\
\hline S 16-0,39 & 0,39 & 35 & 44 & 53 & 62 & 73 & 100 & M6 \\
\hline S 17-0,47 & 0,47 & 32 & 40 & 48 & 55 & 65 & 90 & M6 \\
\hline S 18-0,56 & 0,56 & 29 & 37 & 44 & 51 & 60 & 83 & M6 \\
\hline S 19-0,68 & 0,68 & 27 & 33 & 41 & 47 & 55 & 76 & M6 \\
\hline S 20-0,82 & 0,82 & 24 & 30 & 36 & 42 & 49 & 67 & M6 \\
\hline S 21-1,0 & 1,0 & 22 & 27 & 33 & 38 & 45 & 62 & M6 \\
\hline S 22-1,2 & 1,2 & 20 & 25 & 30 & 35 & 41 & 56 & M6 \\
\hline S 23-1,5 & 1,5 & 18 & 22,5 & 27 & 31 & 37 & 51 & M6 \\
\hline S 24-1,8 & 1,8 & 16,5 & 20,5 & 25 & 28 & 34 & 46 & M6 \\
\hline S 25-2,2 & 2,2 & 15 & 18,5 & 23 & 26 & 31 & 42 & M6 \\
\hline S 26-2,7 & 2,7 & 13,5 & 16,5 & 20 & 23 & 27 & 37 & M6 \\
\hline S 27-3,3 & 3,3 & 12 & 15 & 18 & 21 & 25 & 34 & M6 \\
\hline S 28-3,9 & 3,9 & 11 & 14 & 16 & 19 & 23 & 31 & M6 \\
\hline S 29-4,7 & 4,7 & 10 & 12,5 & 15 & 18 & 21 & 28 & M6 \\
\hline S 30-5,6 & 5,6 & 9,3 & 11,3 & 13,7 & 16 & 18,6 & 25 & M6 \\
\hline
\end{tabular}
\({ }^{(1)}\) only valid for S3-S30


E

\section*{Type series FE 31．．}


\section*{Technologies}
－for smaller up to middle power rating
－integration and combinations possible
－for mounting into switch cabinet， resistor unit or ventilation duct
－continuous power rating up to 22 kW
－optional with temperature switch （TS），with fast－on connectors \(6,3 \times 0,8\) ；type designation would be FEQ 31．．．

Each resistor block can be equipped with 2 or more connecting lugs Depending on the current the connection is realized by M6 or M10 screw．The mounting into the switch cabinet，resistor unit or ventilation duct is made by M12 thread bolts．

By means of series connection of steel－ grid elements we achieve higher ohmic values；by connecting in parallel of several resistor blocks we achieve higher currents and power ratings．
We can also mount several partial resistors into one resistor block（e．g． 3 phases），separated by insulation rolls．

\section*{Warning：}

Not more than 3 resistor blocks should be mounted on top of each other！ For customer wiring you should use a heat resistant wire．

\section*{Application}

An important application is the use as load resistor，where high power rating is demanded by the user．

Further applications are e．g．the mounting of the steel－grid blocks into a ventilation duct with simultaneous forced ventilation by the exhaust air of a diesel engine radiator．


Steel－grid fixed resistor block，degree of protection IP 00 for integration into switch cabinets，units or ventilation ducts．Connection directly at the resistor．
\({ }^{\text {（2）}}\) optional，type designation would be FE．U 31 ．．

\section*{Electrical and mechanical data}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
type \\
FE 3．．without， FEQ 3．．with TS
\end{tabular}} & \multirow[t]{2}{*}{typical power in kW at \(40^{\circ} \mathrm{C}\) and 100\％DCF} & \multicolumn{2}{|l|}{production range \(\Omega\)－value} & \multirow[t]{2}{*}{number of steel－grids corresp．to given device size} & \multirow[t]{2}{*}{\begin{tabular}{l}
dimensions in mm \\
L
\end{tabular}} & \multirow[t]{2}{*}{max． weight in kg} \\
\hline & & from & to & & & \\
\hline FE．31503．． & 1，5 & 0，07 & 16 & 3 & 180 & 3，5 \\
\hline FE．31504．． & 2，0 & 0，09 & 22 & 4 & 180 & 4，0 \\
\hline FE．31005．． & 2，5 & 0，11 & 28 & 5 & 280 & 5，0 \\
\hline FE．31007．． & 3，5 & 0，15 & 39 & 7 & 280 & 6，0 \\
\hline FE．31009．． & 4，5 & 0，20 & 50 & 9 & 280 & 7，0 \\
\hline FE．31112．． & 6，0 & 0，26 & 67 & 12 & 380 & 8，0 \\
\hline FE．31114．． & 7，0 & 0，31 & 78 & 14 & 380 & 9，0 \\
\hline FE．31216．． & 8，0 & 0，35 & 89 & 16 & 580 & 11，0 \\
\hline FE．31220．． & 10，0 & 0，44 & 112 & 20 & 580 & 13，0 \\
\hline FE．31224．． & 12，0 & 0，53 & 134 & 24 & 580 & 15，0 \\
\hline FE．31326．． & 13，0 & 0，57 & 145 & 26 & 780 & 17，5 \\
\hline FE．31330．． & 15，0 & 0，66 & 168 & 30 & 780 & 19，5 \\
\hline FE．31334．． & 17，0 & 0，75 & 190 & 34 & 780 & 21，5 \\
\hline FE．31436．． & 18，0 & 0，79 & 201 & 36 & 980 & 23，5 \\
\hline FE．31440．． & 20，0 & 0，88 & 224 & 40 & 980 & 25，5 \\
\hline FE．31444．． & 22，0 & 0，97 & 246 & 44 & 980 & 27，5 \\
\hline
\end{tabular}

This table represents only a selection of our program．All numbers of steel－grids between 2 pc ． （ \(1,0 \mathrm{~kW}\) ）und 44 pc ．（ 22 kW ）corresponding to our types are available．Type code and selection of units see Technical Details pages T613E to T620E．


\section*{Example of dimensioning and selection of a special unit：}

One phase load resistor： \(5,0 \mathrm{~kW}\) for 48 V DC；resistance value \(0,46 \Omega\) ； selected： \(9 \mathrm{~S} 5-0,047+1 \mathrm{~S} 4-0,039 \Omega=0,46 \Omega\) ；
type FE \(3111002-0,46\) with typical power \(5,0 \mathrm{~kW}\) ，connection on 2 connection lugs M10 at the resistor，with temperature switch（2 connections）



\section*{Technologies}
- especially compact construction form, dimensions depend on number of installed steel-grids.
- small to middle power rating
- continuous power rating up to 22 kW
- integration into switch cabinet possible
- temperature switch optional (TS), with fast-on connectors \(6,3 \times 0,8\); type designation would be FKEQ 31...

Each resistor can be delivered with 2 or more connection lugs. Depending on the current the lugs are equipped with M6 or M10 screws. The resistor is mounted in a cabinet by means of the two side plates.

Mounting of several partial resistors (e.g. 3 -phases) into one resistor unit is possible. They are separated by insulation rolls.

You will find suggestions for the dimensioning of the resistor for short time load in chapter "Technical Details", pages T613E to T620E.
For customer wiring you should use a heat resistant wire.

\section*{Application}

Customized solutions like integrating a resistor unit into a switch cabinet, when a very compact construction form is needed.

Thus various kinds of solutions are possible for many applications such as:
- load resistors
- charging or discharging resistors
- braking resistors
- starting and regulating resistors etc.
- damping resistors


Steel-grid fixed resistor, degree of protection IP 00 , with side plates for integration into a switch cabinet. Connection directly at the resistor.
\({ }^{(2)}\) optional, the type designation would be FKE.U 31..

\section*{Electrical and mechanical data}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l} 
type \\
FKE 3.. \\
without TS, \\
\begin{tabular}{l} 
FKEQ 3..
\end{tabular} \\
with TS
\end{tabular} & \begin{tabular}{c} 
typical \\
power in kW \\
at 40 C and \\
\(100 \%\) DCF
\end{tabular} & \multicolumn{2}{|c|}{\begin{tabular}{c} 
production \\
range \\
\(\Omega\)-value \\
from
\end{tabular}} & \multicolumn{2}{c|}{\begin{tabular}{c} 
number of \\
steel-grids \\
corresp. to \\
given device \\
size
\end{tabular}} & \multicolumn{2}{c|}{\begin{tabular}{c} 
dimensions in \\
mm
\end{tabular}} \\
\hline FKE. 31503.. & 1,5 & 0,07 & 16 & 3 & \begin{tabular}{c} 
max. \\
weight \\
in kg
\end{tabular} \\
FKE. 31504.. & 2,0 & 0,09 & 22 & 4 & 147 & 162 & 4,4 \\
\hline FKE. 31005.. & 2,5 & 0,11 & 28 & 5 & 167 & 182 & 5,0 \\
FKE. 31007.. & 3,5 & 0,15 & 39 & 7 & 227 & 242 & 5,6 \\
FKE. 31009.. & 4,5 & 0,20 & 50 & 9 & 267 & 282 & 7,8 \\
\hline FKE. 31112.. & 6,0 & 0,26 & 67 & 12 & 327 & 342 & 9,7 \\
FKE. 31114.. & 7,0 & 0,31 & 78 & 14 & 367 & 382 & 10,8 \\
\hline FKE. 31216.. & 8,0 & 0,35 & 89 & 16 & 407 & 423 & 12,0 \\
FKE. 31220.. & 10,0 & 0,44 & 112 & 20 & 487 & 503 & 14,3 \\
FKE. 31224.. & 12,0 & 0,53 & 134 & 24 & 567 & 583 & 16,6 \\
\hline FKE. 31326.. & 13,0 & 0,57 & 145 & 26 & 607 & 623 & 17,8 \\
FKE. 31330.. & 15,0 & 0,66 & 168 & 30 & 687 & 703 & 20,1 \\
FKE. 31334.. & 17,0 & 0,75 & 190 & 34 & 767 & 783 & 22,4 \\
\hline FKE. 31436.. & 18,0 & 0,79 & 201 & 36 & 807 & 823 & 23,6 \\
FKE. 31440.. & 20,0 & 0,88 & 224 & 40 & 887 & 903 & 25,9 \\
FKE. 31444.. & 22,0 & 0,97 & 246 & 44 & 967 & 983 & 28,2 \\
\hline
\end{tabular}

This table represents only a selection of our program. All numbers of steel-grids between 2 pc . ( \(1,0 \mathrm{~kW}\) ) und 44 pc . ( 22 kW ) corresponding to our types are available. Type code and selection of units see Technical Details pages T613E to T620E.

The dimensions \(A\) and \(B\) increase by 20 mm per each steel-grid element (SG)


\section*{Example of dimensioning and selection of a specific unit:}

Three phase load resistor: for \(3 \times 3,0 \mathrm{~kW}=9,0 \mathrm{~kW}\) for \(3 \times 230 / 400 \mathrm{~V} ; 50 \mathrm{~Hz}\), \(3 \times 13 \mathrm{~A}, 3 \times 17,8 \Omega\), (Rcold=16,9) starpoint on connection lug: selected: 3 S \(26-2,7 \Omega+4 \mathrm{~S} 25-2,2 \Omega=16,9 \Omega ; 3 \times 7\) SG
type FKE \(3122104-3 \times 17,7\) with typical power \(3 \times 3,0 \mathrm{~kW}\), connection on 4 connection lugs at the resistor (value Rwanted)



\section*{Technologies}
- low priced type, very compact design
- continuous power rating up to 22 kW
- for mounting on top of a switch cabinet (all types besides FGFD..)
- for integration into a switch cabinet with terminals that are protected against contact (type FGFD..)
- units may be wall or plate mounted, perforated steel sheet at the front, top and bottom, terminals at the bottom.
- terminal type and size selectable according to mounting place and connection technics
- optional with temperature switch (type FGF.Q)
- optional with thermal overload relay (type FGFT)
- optional in intrinsically safe version with FRIZLEN DC-POWERSWITCH \({ }^{(3)}\) (type FGFX)

\section*{Application}

These units are fitting especially for mounting on, beside or in a switch cabinet by their relatively flat and compact construction in 6 widths with various connections and monitoring possibilities (Please mind the description of the types).

An important application is the use as braking resistor for motor/generator drive of motors with frequency converters, where high power rating is combined with low budget solution.

You will find suggestions for the dimensioning of the resistor for short time load at chapter Technical Details, pages T613E to T620E.

\section*{Warning}

When resistor is integrated into a cabinet we recommend to provide a corresponding forced ventilation by the user for better removal of larger dissipations.


Steel-grid fixed resistor unit, degree of protection IP 20 if mounted on an appropriate surface, with zinc plated steel enclosure. It is equipped with max. 2 terminals of different kinds mounted in or at the enclosure or in the attached terminal box. Some types can be provided with a temperature switch or with an integrated thermal overload relay or DC/POWERSWITCH. For your selection of a specific type you will find tables on the next page.
\({ }^{(1)}\) if mounted on an appropriate surface
\({ }^{(3)}\) optional (not for FGFG and FGFX), type designation would be FGF..U 31 .

\section*{Details of the different types}

\section*{Type FGFG:}

Version with 2 flat type terminals up to max. 35 A rated current in the attached terminal box with cable gland. An additional temperature switch is not possible.

\section*{Type FGFK(Q):}

Version like FGFG, with a bigger attached terminal box with cable glands, the space is sufficient for 2 terminals up to M8 (max. 115 A rated current), and for 2 additional porcelain terminals for an optional temperature switch (FGFKQ).

\section*{Type FGFL(Q):}

Version, where all terminals are mounted on the terminal strip inside the housing. Terminals up to M8 (max. 115 A rated current) are accessible after disassembling a part of the cover. If equipped with temperature switch, there are 2 additional porcelain terminals on the terminal strip (Type FGFLQ).No cable glands.

\section*{Type FGFD(Q):}

Construction with feed-through terminals up to max. 65 A that are protected against contact and directly fixed on the side plate. It is a space-saving solution for integrating into a switch cabinet. If equipped with temperature switch there are 2 additional protected feed-through terminals (FGFDQ).

\section*{Type FGFT:}

Version with integrated thermal overload relay in the attached terminal box with cable glands up to max. 80 A rated current. With integrated short-circuit and overload signalling. Connection directly at the overload relay.

Type FGFX:
Intrinsically safe version with integrated FRIZLEN DC-POWERSWITCH in the attached terminal box with cable glands, up to max. 40 A rated current. With integrated short-circuit and overload protection inclusive switching off the resistor and signalling. Connection directly at the FRIZLEN DC-POWERSWITCH \({ }^{(2)}\). \({ }^{(2)}\) DGBM Nr. 202009015851.9
Attention: Only for DC voltage up to 850 VDC.

\section*{Rated current and cross section of terminals and devices}

See technical details on page T618E.

Monitoring options of the type series FGF.. 31..

\section*{1. Signalling-no disconnection!}

This warning has to be considered by the customer, e.g. by a warning or disconnection of the mains through the customer. Details, on page T615E.

\section*{1a) with temperature switch (FGF.Q)}

Different types can be equipped for temperature monitoring with a temperature switch which monitors an overloading of the resistor by a normally closed contact free of potential (NCC).
Connections pls. look at picture 1a)

\section*{1b) with thermal overload relay (FGFT)}

An eventual overload of the resistor is monitored by the thermal overload relay which is mounted in the attached terminal box. This is accomplished by NCC and NOC contacts. Also for signalling high short time peak power.
Connections pls. look at picture 1b)
Pic. 1a)
P 1b)



\section*{2. Disconnecting and signalling!}

\section*{with FRIZLEN DC-POWERSWITCH (FGFX) up to 850 VDC and up to 40 A}

This type series with integrated overload switch in the attached terminal box is able to protect the integrated resistor from constant overload and from too high short time peak power, e.g. caused by a false operational mode or a fault by an short circuited chopper transistor.
This option for protection not only signals the hardware default, it switches off the object / the resistor absolutely reliable! Possible damage in the environment by overheating and burning are effectively avoided.
After a successful fault clearance the DCPOWERSWITCH can be switched on like a normal automatic cutout.

Connections pls. look at picture

\(1,0-22 \mathrm{~kW}\) with 2 terminals

\section*{Decision matrix}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ type } & FGFG & FGFK & \begin{tabular}{c} 
FGF \\
KQ
\end{tabular} & FGFL & \begin{tabular}{c} 
FGF \\
LQ
\end{tabular} & FGFD & \begin{tabular}{c} 
FGF \\
properties
\end{tabular} & FGFT & FGFX \\
\hline \begin{tabular}{l} 
with temperature switch \\
(TS)
\end{tabular} & & & X & & X & & X & & \\
\hline \begin{tabular}{l} 
thermal overload relay (up \\
to max. 80 A rated current)
\end{tabular} & & & & & & & & X & \\
\hline \begin{tabular}{l} 
DC-POWERSWITCH \\
(up to max. 40 A)
\end{tabular} & & & & & & & & & X \\
\hline \begin{tabular}{l} 
terminals in attached \\
terminal box with PG- \\
strain relief
\end{tabular} & X & X & X & & & & & X & X \\
\hline \begin{tabular}{l} 
terminals inside unit \\
(without PG- strain relief)
\end{tabular} & & & & X & X & & & & \\
\hline \begin{tabular}{l} 
flat terminals up to \\
max. 35 A
\end{tabular} & X & X & X & X & X & & & & \\
\hline \begin{tabular}{l} 
device terminal up to \\
max. 60 A
\end{tabular} & & X & X & & & & & & \\
\hline \begin{tabular}{l} 
bolt terminals M6 \\
up to max. 60 A
\end{tabular} & & X & X & X & X & & & & \\
\hline \begin{tabular}{l} 
bolt terminals M8 \\
up to max. 115 A
\end{tabular} & & X & X & X & X & & & & \\
\hline \begin{tabular}{l} 
feed-thru terminals up \\
to max. 65 A
\end{tabular} & & & & & & X & X & & \\
\hline \begin{tabular}{l} 
PA cage clamp terminals \\
up to max. 30 A
\end{tabular} & & X & X & & & & & & \\
\hline
\end{tabular}

\section*{Electrical and mechanical data}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
types \\
FGFG, \\
FGFK, FGFKQ, \\
FGFL, FGFLQ, \\
FGFD, FGFDQ, \\
FGFT, FGFX
\end{tabular} & typical power in kW at \(40^{\circ} \mathrm{C}\) and 100\% DCF & \multicolumn{2}{|l|}{production range \(\Omega\)-value} & number of steelgrids corresp. to given device size & A & \(\operatorname{dim}\)
B & sions

C1
(1) & in mm

C 2
(2) & \[
\begin{aligned}
& \text { C3 } \\
& \text { (3) }
\end{aligned}
\] & max. weight in kg \\
\hline FGF.. 31503.. & 1,5 & 0,07 & 16 & 3 & 170 & 195 & 207 & 230 & 255 & 6,0 \\
\hline FGF.. 31504.. & 2,0 & 0,09 & 22 & 4 & 170 & 195 & 207 & 230 & 255 & 6,5 \\
\hline FGF.. 31005.. & 2,5 & 0,11 & 28 & 5 & 270 & 295 & 307 & 330 & 355 & 7,5 \\
\hline FGF.. 31007.. & 3,5 & 0,15 & 39 & 7 & 270 & 295 & 307 & 330 & 355 & 8,5 \\
\hline FGF.. 31009.. & 4,5 & 0,20 & 50 & 9 & 270 & 295 & 307 & 330 & 355 & 9,5 \\
\hline FGF.. 31112.. & 6,0 & 0,26 & 67 & 12 & 370 & 395 & 407 & 430 & 455 & 12 \\
\hline FGF.. 31114.. & 7,0 & 0,31 & 78 & 14 & 370 & 395 & 407 & 430 & 455 & 13 \\
\hline FGF.. 31216.. & 8,0 & 0,35 & 89 & 16 & 570 & 595 & 607 & 630 & 655 & 18 \\
\hline FGF.. 31220.. & 10,0 & 0,44 & 112 & 20 & 570 & 595 & 607 & 630 & 655 & 20 \\
\hline FGF.. 31224.. & 12,0 & 0,53 & 134 & 24 & 570 & 595 & 607 & 630 & 655 & 22 \\
\hline FGF.. 31326.. & 13,0 & 0,57 & 145 & 26 & 770 & 795 & 807 & 830 & 855 & 29 \\
\hline FGF.. 31330.. & 15,0 & 0,66 & 168 & 30 & 770 & 795 & 807 & 830 & 855 & 31 \\
\hline FGF.. 31334.. & 17,0 & 0,75 & 190 & 34 & 770 & 795 & 807 & 830 & 855 & 33 \\
\hline FGF.. 31436.. & 18,0 & 0,79 & 201 & 36 & 970 & 995 & 1007 & 1030 & 1055 & 40 \\
\hline FGF.. 31440.. & 20,0 & 0,88 & 224 & 40 & 970 & 995 & 1007 & 1030 & 1055 & 42 \\
\hline FGF.. 31444.. & 22,0 & 0,97 & 246 & 44 & 970 & 995 & 1007 & 1030 & 1055 & 44 \\
\hline
\end{tabular}

This table represents only a selection of our program. All numbers of steel-grids between 2 pc . ( \(1,0 \mathrm{~kW}\) ) und 44 pc . ( 22 kW ) corresponding to our types are available. Type code and selection of units see Technical Details pages T613E to T620E.
Example: 2 device terminals + temperature switch ( 2 terminals) => FGFKQ 31... 04
(1) dim. C1 is only valid for Type FGFD (dimension sheet 16M0442)
(2) dim. C2 is only valid for Type FGFG (dimension sheet 16M0041)
(3) dim. C3 valid for types FGFK (dim. sheet 16M0410), FGFT (dim. sheet 16M0086) and FGFX (dim. sheet 16M0841)
for type FGFL dim. "B" is valid, as design without term.box (dim. sheet 16M0424)


Type series FGHD 31..


\section*{Technologies}
- low priced type, very compact design
- for middle power ratings up to 12 kW
- for space saving integration into a switch cabinet
- optional with temperature switch wired on two terminals. Type designation would be FGHDQ. 31...

The given power rating values are valid for \(100 \%\) CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF).
\begin{tabular}{|c|c|c|c|c|c|}
\hline DCF & \(60 \%\) & \(40 \%\) & \(25 \%\) & \(15 \%\) & \(6 \%\) \\
\hline OLF & 1,5 & 2,2 & 3,0 & 4,0 & 7,6 \\
\hline
\end{tabular}

These overload factors are valid for a total cycle time of maximum 120 s

You will find further details in chapter Technical Details pages T613E to T620E.

\section*{Application}

An important application is the use as braking resistor for motor/generator drive of motors with frequency converters, where middle power ratings are to be integrated into a switch cabinet in a space saving way.

\section*{Warning}

The user has to make sure that large dissipations are removed. We recommend an adequate forced ventilation.

\section*{C- US \({ }^{(2)}\)} for integration into switch cabinet

Steel-grid fixed resistor, degree of protection IP 20 in fixed condition, in zinc plated steel sheet enclosure with 2 feed-through terminals for the resistor, that are integrated into the side-panel end plates, protected against contact according to BGV A2. Optional also with temperature switch (TS).
\({ }^{(1)}\) if mounted on an appropriate surface
\({ }^{\text {(2) }}\) optional, type designation would be FGHD.U 31..

\section*{Electrical and mechanical data}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Type FGHD. 31.. without TS, & typical power in kW at & \multicolumn{2}{|l|}{production range \(\Omega\)-value} & max. number of steel-grids & \multicolumn{2}{|l|}{dimensions in mm} & max. weight in kg \\
\hline \[
\begin{aligned}
& \text { FGHDQ. } 31 . . \\
& \text { with TS }
\end{aligned}
\] & \[
\begin{aligned}
& 100 \% \\
& \text { DCF }
\end{aligned}
\] & & & to given device size & A & B & \\
\hline FGHD..31502.. & 1,0 & 0,05 & 11 & 2 & 170 & 195 & 6,0 \\
\hline FGHD..31503.. & 1,5 & 0,07 & 16 & 3 & 170 & 195 & 6,5 \\
\hline FGHD..31504.. & 2,0 & 0,09 & 22 & 4 & 170 & 195 & 7,0 \\
\hline FGHD..31005.. & 2,5 & 0,11 & 28 & 5 & 270 & 295 & 7,5 \\
\hline FGHD..31007.. & 3,5 & 0,15 & 39 & 7 & 270 & 295 & 8,5 \\
\hline FGHD..31009.. & 4,5 & 0,20 & 50 & 9 & 270 & 295 & 9,5 \\
\hline FGHD..31112.. & 6,0 & 0,26 & 67 & 12 & 370 & 395 & 12 \\
\hline FGHD..31114.. & 7,0 & 0,31 & 78 & 14 & 370 & 395 & 13 \\
\hline FGHD..31216.. & 8,0 & 0,35 & 89 & 16 & 570 & 595 & 18 \\
\hline FGHD..31220.. & 10,0 & 0,44 & 112 & 20 & 570 & 595 & 20 \\
\hline FGHD..31224.. & 12,0 & 0,53 & 134 & 24 & 570 & 595 & 22 \\
\hline
\end{tabular}

This table represents only a selection of our programm. All numbers of steel-grids corresponding to our types between \(2 \mathrm{pc} .(1,0 \mathrm{~kW})\) und 24 pc . ( 12 kW ) are available. Type code and selection of units see Technical Details pages T613E to T620E.


\section*{Example of dimensioning and selection of a specific unit:}

One phase braking resistor for frequency converter drive with temperature switch, short time dissipation 24 kW at \(15 \%\) DCF, total cycle time shorter than 120 s , intermediate voltage circuit 650 V ; resistance value \(18 \Omega\); calculating of continuous dissipation: \(24 \mathrm{~kW}: 4,0=6,0 \mathrm{~kW}\); chosen: FGHDQ 3111204-18
\(\frac{\text { FGHDQ } 311 \frac{12}{1} \underline{04}-\frac{18}{L}}{}\)\begin{tabular}{l} 
ohmic value \(\pm 10 \%\) \\
no. of terminals \((2)+2\) terminals for TS \\
number of stel-grids \\
type series
\end{tabular}

Type series FK 3..


\section*{Technologies}
- for middle and high power ratings
- Up to 40 FK-terminals
- continuous dissipation up to 66 kW
- for floor-level mounting
- optional with temperatue switch (TS), type designation would be then FKQ 3...

The necessary terminals are mounted on a terminal strip in the lower part of the device.

You will find suggestions for the dimensioning of the resistor for short time load at chapter Technical Details, pages T613E to T620E.

\section*{Application}

This construction is especially appropriate for big power ratings that are to be low in weight and in price. The same applies to the installation in closed electrotechnical rooms, where the degree of protection IP 00 is allowed.

\section*{Special design}
- dimensioning for forced ventilation supplied by the user
- special construction forms for integration into exhaust air ducts for engine radiators

\section*{Option}
- with temperature switch wired on 2 terminals, type then FKQ...
\(1,5-66 \mathrm{~kW}\) with up to 40 terminals


Steel-grid fixed resistor unit, degree of protection IP 00 with 2 side-panel end plates out of zinc plated steel sheet. Ceramic isolated flat or bolt terminals of 35 A up to 400 A in variable combinations available.
\({ }^{(2)}\) optional, type designation would be FK.U \(3 .\).

\section*{Electrical and mechanical data}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Type \\
FK 3.. without TS,
\end{tabular} & max. typical power in kW at \(40^{\circ} \mathrm{C}\) and & \multicolumn{2}{|l|}{production range \(\Omega\)-value} & max. number of steel-grids & \multicolumn{3}{|l|}{dimensions in mm} & \multirow[t]{2}{*}{max. weight in kg} \\
\hline FKQ. 3.. with TS & & from & to & given type size & A & B & C & \\
\hline FK. 31114.. & 7,0 & 0,31 & 78 & 14 & 370 & 395 & 460 & 19 \\
\hline FK. 31224.. & 12,0 & 0,53 & 134 & 24 & 570 & 595 & 460 & 26 \\
\hline FK. 31334.. & 17,0 & 0,75 & 190 & 34 & 770 & 795 & 460 & 38 \\
\hline FK. 31444.. & 22,0 & 0,97 & 246 & 44 & 970 & 995 & 460 & 45 \\
\hline FK. 32128.. & 14,0 & 0,16 & 156 & 28 & 370 & 395 & 710 & 31 \\
\hline FK. 32248.. & 24,0 & 0,27 & 268 & 48 & 570 & 595 & 710 & 46 \\
\hline FK. 32368.. & 34,0 & 0,38 & 380 & 68 & 770 & 795 & 710 & 70 \\
\hline FK. 32488.. & 44,0 & 0,49 & 492 & 88 & 970 & 995 & 710 & 80 \\
\hline FK. 33272.. & 36,0 & 0,18 & 403 & 72 & 570 & 595 & 960 & 62 \\
\hline FK. 33302.. & 51,0 & 0,25 & 570 & 102 & 770 & 795 & 960 & 87 \\
\hline FK. 33432.. & 66,0 & 0,32 & 739 & 132 & 970 & 995 & 960 & 115 \\
\hline
\end{tabular}

This table only represents the maximum number of steel-grids of the specific size of unit and the corresponding maximum typical power. All numbers of steel-grids corresponding to our types between 3 pc . ( \(1,5 \mathrm{~kW}\) ) und 132 pc . ( 66 kW ) are available. Type code and selection of units see Technical Details pages T613E to T620E.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Type & \multicolumn{6}{|c|}{ Max. number of terminals up to } \\
& \begin{tabular}{c} 
FK \\
\(35 A\)
\end{tabular} & \begin{tabular}{c} 
BK M6 \\
60A
\end{tabular} & \begin{tabular}{c} 
BK M8 \\
\(115 A\)
\end{tabular} & \begin{tabular}{c} 
BK M10 \\
\(170 A\)
\end{tabular} & \begin{tabular}{c} 
BK M10 \\
\(220 A\)
\end{tabular} & \begin{tabular}{c} 
BK M12 \\
\(400 A\)
\end{tabular} \\
\hline FK. 3.1.. & 16 & 10 & 8 & 7 & 7 & 7 \\
\hline FK. 3.2.. & 24 & 16 & 14 & 12 & 12 & 11 \\
\hline FK. 3.3.. & 32 & 23 & 20 & 17 & 17 & 16 \\
\hline FK. 3.4.. & 40 & 30 & 26 & 22 & 22 & 20 \\
\hline
\end{tabular}


Example of dimensioning and selection of a specific unit:
see Technical Details pages T613E to T620E

Type series FKK.. 3..


\section*{Technologies}
- for middle or high power ratings
- low priced solution for existing forced ventilation provided by the customer
- continuous dissipation up to 250 kW
- prepared for integration into customer`s duct.
- For exhaust air temperatures up to \(60^{\circ} \mathrm{C}\)
- optional with temperature switch wired on two terminals, type designation would be FKKEQ 3...

We provide ceramic insulated flat or bolt terminals of 35 A up to 400 A and mount the required terminals into an attached terminal box.

On behalf of a large range of dimensions, vertically as well as horizontally, we realize all kinds of duct cross sections.

\section*{Application}

An important application is the use as load resistor for emergency power units.

In cases where a diesel power unit is to be protected by a base load against "wear" due to small load or when necessary or compulsary load tests of efficiency of the power unit must be accomplished.

We are specialists in customized solutions!

\section*{Special designs}
- integration into ducts, provided by the customer, type series FKKF..
- integration kit for integration by the user
- up to 5 blocks can be mounted on top of each other
- with integration of 2 resistor sets in a row
- with wind indicator monitoring
\(5,0-250 \mathrm{~kW}\), in duct design


Steel-grid fixed resistor unit, degree of protection IP 00 integrated in a duct section for integration by the user into existing or new exhaust air installations, in a zinc steel sheet duct with attached terminal box and optional temperature switch.

\section*{Electrical and mechanical data}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Type FKK. 3.. & \begin{tabular}{l}
max. \\
typical
\end{tabular} & max. number of steel-grids & \multicolumn{3}{|c|}{duct height} & \multicolumn{3}{|c|}{uct width} & \multirow[t]{2}{*}{max. weight in kg} \\
\hline FKKEQ. 3.. with TS & kW at \(40^{\circ} \mathrm{C}\) and 100\% DCF & given device combination ( \(\mathrm{n} \times \mathrm{m}\) ) & \begin{tabular}{l}
max. \\
block \\
\#(n)
\end{tabular} & A & B & \begin{tabular}{l}
max. \\
SG- \\
\# \\
(m)
\end{tabular} & C & D & \\
\hline F.. 31215.. & 15,0 & 15 & 1 & 415 & 475 & 15 & 415 & 475 & 25 \\
\hline F.. 32236.. & 37,5 & 36 & 2 & 450 & 510 & 18 & 450 & 510 & 35 \\
\hline F.. 32242.. & 45,0 & 42 & 2 & 550 & 610 & 21 & 500 & 560 & 47 \\
\hline F.. 32248.. & 50,0 & 48 & 2 & 600 & 660 & 24 & 550 & 610 & 50 \\
\hline F.. 32354.. & 60,0 & 54 & 2 & 650 & 710 & 27 & 630 & 690 & 55 \\
\hline F.. 33384.. & 95,0 & 84 & 3 & 690 & 750 & 28 & 650 & 710 & 85 \\
\hline F.. 33390.. & 100 & 90 & 3 & 720 & 780 & 30 & 700 & 760 & 88 \\
\hline F.. 33399.. & 112,5 & 99 & 3 & 750 & 810 & 33 & 765 & 825 & 95 \\
\hline F.. 34444.. & 160 & 144 & 4 & 900 & 960 & 36 & 810 & 870 & 135 \\
\hline F.. 34460.. & 180 & 162 & 4 & 1000 & 1060 & 41 & 900 & 960 & 150 \\
\hline
\end{tabular}

This table represents only a selection of what can be combined concerning duct dimensions. Other combinations and other dimensions are available, of course. All numbers of steel-grids corresponding to our types between 15 pcs. ( 15 kW ) und 264 pcs. ( 250 kW ) are available. Type code and selection of units see Technical Details pages T613E to T620E.
Please let us know your specific case of application. We will meet exactly your requirements.


\section*{Example of dimensioning and selection of a specific unit:}

Please contact us, we will be glad to work on a detailed offer for you!

Type series FA 3.. / FS 3..
\(1,5-66 \mathrm{~kW}\) with several terminals


\section*{Technologies}
- for middle and high power ratings
- Up to 40 FK-terminals
- continuous dissipation up to 66 kW
- for floor-level mounting
- for outdoor location (FS...)
- optional with temperature switch (TS) wired on two terminals, the type designation would be F.Q. 3...

The necessary terminals are mounted on a terminal strip in the lower part of the device and are accessible after demounting a cover.

By the use of 12 different enclosure sizes - with 3 heights and 4 widths we can well adapt the construction form to the given space. In the range between 14 and 88 steel-grids you can make your choice between smaller and lower forms.

You will find suggestions for the dimensioning of the resistor for short time load at chapter Technical Details, pages T613E to T620E.

\section*{Application}

An important application is the use as braking resistor for motor/generator drive of motors with frequency converters, where big power ratings are necessary for outdoor location combined with degree of protection IP 20 or IP 23.

\section*{Special design}
- For special applications also in a four block design
- Enclosure additionally varnished in RAL 7032 or other colours
- Connection parts and enclosure out of stainless steel 1.4301/AISI304


FA... Steel-grid fixed resistor unit, degree of protection IP 20 without weatherproof roof,
FS... Steel-grid fixed resistor unit, degree of protection IP 23 with weatherproof roof

In completely closed zinc sheet enclosure with protective grid at the top and bottom. Ceramic insulated flat or bolt terminals of 35 A up to 400 A in variable combinations available.
\({ }^{\text {(2) }}\) optional, the type designation would be FA.U 3.. / FS.U 3..

\section*{Electrical and mechanical data}


This table only represents the maximum number of steel-grids of the specific size of unit and the corresponding maximum typical power. All numbers of steel-grids corresponding to our types between 3 pc . ( \(1,5 \mathrm{~kW}\) ) und 132 pc . ( 66 kW ) are available. Type code and selection of units see Technical Details pages T613E to T620E.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Type & \multicolumn{6}{|c|}{ Max. number of terminals up to } \\
& FK & BK M6 & BK M8 & BK M10 & BK M10 & BK M12 \\
& 35A & 60A & 115A & 170A & 220 A & 400A \\
\hline F.. 3.1.. & 16 & 10 & 8 & 7 & 7 & 7 \\
\hline F.. 3.2.. & 24 & 16 & 14 & 12 & 12 & 11 \\
\hline F.. 3.3.. & 32 & 23 & 20 & 17 & 17 & 16 \\
\hline F.. 3.4.. & 40 & 30 & 26 & 22 & 22 & 20 \\
\hline
\end{tabular}

FS..

shown:
Type series FS.. with roof dim. D is total dimension
for type series FA..
design without roof!
Dim. \(C\) is total dimension

\section*{Example of dimensioning and selection of a specific unit:}
see Technical Details pages T613E to T620E

Type series FS 319．．／FS 320．．


\section*{Technologies}
－for smaller power ratings
－compact construction form
－continuous dissipation up to \(5,0 \mathrm{~kW}\)
－units may be wall mounted， horizontal mounting not admitted
－for outdoor mounting（FS．．．）
The necessary terminals are mounted in the lower part of the device and are accessible after demounting the cover． We can provide 2 flat or 2 bolt terminals M6 or M8．

You will find suggestions for the dimensioning of the resistor for short time load at chapter Technical Details， pages T613E to T620E．

\section*{Application}

On behalf of small dimensions and compact construction form this type series is especially appropriate as load resistor for small power ratings，if degree of protection IP 23 is necessary．

A lot of applications are possible because of the high degree of protection and the wall mounting，such as the outdoor mounting．

\section*{Special design}
－degree of protection IP 20 （without roof）， type FA 319．．／FA 320．．

\section*{\(0,5-5,0 \mathrm{~kW}\) with 2 terminals}

Steel－grid fixed resistor unit，degree of protection IP 23 with weatherproof roof， appropriate for outdoor mounting，in zinc steel sheet enclosure，for connection with 2 terminals，with several holes for cable glands，that are closed by rubber sockets．

\section*{Electrical and mechanical data}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline type & \begin{tabular}{c} 
max． \\
typical \\
power in \\
kW at \\
\(40^{\circ} \mathrm{C}\) and \\
\(100 \%\) \\
DCF
\end{tabular} & \multicolumn{2}{c|}{\begin{tabular}{c} 
production \\
range \\
\(\Omega\)－value
\end{tabular}} & \begin{tabular}{c} 
max． \\
number of \\
steel－grids \\
corresp．to \\
given \\
device size
\end{tabular} & \begin{tabular}{c} 
dim． \\
in \\
mm
\end{tabular} & F & \begin{tabular}{c} 
drills for cable \\
lead－throughs
\end{tabular} \\
to & \begin{tabular}{c} 
max． \\
weight \\
inkg
\end{tabular} \\
\hline FS 3190602 & 3,0 & 0,11 & 33,6 & 6 & 200 & \begin{tabular}{c}
\(1 \times\) PG 13，5 \\
\(+1 \times\) PG 16 \\
\(+3 \times P G 21\)
\end{tabular} & 9,5 \\
\hline FS 3201002 & 5,0 & 0,22 & 56,0 & 10 & 335 & 12 \\
\hline
\end{tabular}

This table only represents the maximum number of steel－grids of the specific size of unit and the corresponding maximum typical power．All numbers of steel－grids corresponding to our types between 1 pc ．（ \(0,5 \mathrm{~kW}\) ）and 10 pc ．（ \(5,0 \mathrm{~kW}\) ）are available．


\section*{Example of dimensioning and selection of a specific unit：}

One phase starting resistor as constant series resistor for motor 220 V DC； \(8,5 \mathrm{~kW}\) ， 51 A ；resistor value \(0,72 \Omega\) ；continuous dissipation approx． \(1,9 \mathrm{~kW}\) ； chosen：FS \(3190402-0,72\) with continuous dissipation 2 kW ；this corresponds to 4 steel－grids S12－0，18 \(\Omega=0,72 \Omega\) ，connection with 2 bolt terminals M6



\section*{Technologies}
- for high power ratings
- power ventilated by integrated 230/400 V; 50 Hz axial flow fan
- for floor-level location
- continuous dissipation up to 500 kW
- paralleling of 2 or more units for even higher powers
- for outdoor location (FS...)

The necessary terminals are mounted on a terminal strip in the lower part of the device and are accessible after demounting a cover. Behind the cover is a unbored conduit strip in which you can drill the needed holes for cable glands.

By the use of steel-grid elements with a typical power of 1100 W up to 1700 W per steel-grid with forced ventilation we cover a power range of up to 500 kW per unit. Higher power ratings can be achieved by parallel connection of several devices.

\section*{Application}

An important application is the use as load resistor for the testing of emergency power installations. Protection degree IP 20 is sufficient for installing in factory rooms, IP23 is necessary for outdoor location.

\section*{Special design}
- with integrated switching devices in an attached switch cabinet to control the partial resistors
- with 2 temperature switches wired on terminals.
- special voltages of fan
- please ask for devices with higher power ratings or other construction forms
- mobile, for test areas by rollers


FAV... Steel-grid fixed resistor unit, degree of protection IP 20, without weatherproof roof, air outlet on top,
FSV... Steel-grid fixed resistor unit, degree of protection IP 23 with weatherproof roof, for outdoor location, air outlet at the side via air deflectors in the upper area.
In completely closed zinc sheet enclosure with protective grid at the bottom and powered ventilation by an integrated ventilator. With air flow monitoring by wind indicator relay. Ceramic insulated flat or bolt terminals of 35A up to 400A in variable combinations available or copper busbar.

\section*{Electrical and mechanical data}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
type \\
FAV 3.. \\
FSV 3..
\end{tabular}} & max. & max & \multicolumn{6}{|c|}{dimensions in mm} & \multirow[t]{2}{*}{max. weight in kg} \\
\hline & \[
\begin{gathered}
40^{\circ} \mathrm{C} \text { and } \\
100 \% \\
\text { DCF }
\end{gathered}
\] & given size of device & A & B & C & D & E & F & \\
\hline F.V 38568.. & 75 & 68 & 1200 & 1240 & 800 & 700 & 795 & 770 & 142 \\
\hline F.V 38602.. & 110 & 102 & 1500 & 1540 & 800 & 700 & 795 & 770 & 185 \\
\hline F.V 38776.. & 185 & 176 & 1400 & 1450 & 955 & 850 & 995 & 970 & 265 \\
\hline F.V 38864.. & 250 & 264 & 1700 & 1750 & 955 & 850 & 995 & 970 & 370 \\
\hline F.V 38976.. & 300 & 176 & 1820 & 1875 & 1190 & 1000 & 1004 & 980 & 350 \\
\hline F.V 39052.. & 500 & 352 & 2230 & 2285 & 1190 & 1000 & 1004 & 980 & 480 \\
\hline
\end{tabular}

This table represents only the maximum number of steel-grids of the specific size of unit and the corresponding maximum typical power. Many specifications depending on customer requirement are possible. For the application as load resistor please look on page T431E.

\section*{Standard resistors as brake - resistor}
\begin{tabular}{|c|c|c|}
\hline & & FAV.. \\
\hline type FAV.. & partial resistors in kW (examples) &  \\
\hline FAV 3856608 & 75 & men/rerminals + 且 \\
\hline \begin{tabular}{l}
FAV 3860010 \\
FAV 3860208
\end{tabular} & \[
\begin{gathered}
2 \times 50 \\
110
\end{gathered}
\] & \begin{tabular}{l}
Windfahnenrelais/ \\
+ + 克 wind inditator relay
\end{tabular} \\
\hline \begin{tabular}{l}
FAV 3873610 \\
FAV 3877608
\end{tabular} & \[
\begin{gathered}
2 \times 70 \\
185
\end{gathered}
\] &  \\
\hline \begin{tabular}{l}
FAV 3881610 \\
FAV 3885208
\end{tabular} & \[
\begin{gathered}
2 \times 100 \\
250 \\
\hline
\end{gathered}
\] &  \\
\hline \begin{tabular}{l}
FAV 3896818 \\
FAV 3892209
\end{tabular} & \[
\begin{gathered}
3 \times 100 \\
300
\end{gathered}
\] &  \\
\hline \begin{tabular}{l}
FAV 3902212 \\
FAV 3905208
\end{tabular} & \[
\begin{gathered}
2 \times 200 \\
500
\end{gathered}
\] & 16 M 0182 type 385-388;16M-0786-00-001 type 389-390 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & FSV.. \\
\hline type FSV.. & \[
\begin{aligned}
& \text { partial resistors } \\
& \text { in kW } \\
& \text { (examples) }
\end{aligned}
\] &  \\
\hline FSV 3856808 & 75 & \# + + A \(+\square-\cdots+\cdots\) \\
\hline FSV 3867210 & \(2 \times 40\) & Wind annenrelais, \(\quad \& \quad \square+\infty\) \\
\hline FSV 3860208 & 110 &  \\
\hline FSV 3874408 & 150 & \[
1
\] \\
\hline FSV 3877608 & 185 &  \\
\hline FSV 3880408 & 220 &  \\
\hline FSV 3885208 & 250 &  \\
\hline FSV 3897610 & \(2 \times 150\) & \(\xrightarrow{C}\) \\
\hline FSV 3897608 & 300 & \\
\hline FSV 3908808 & 400 & \\
\hline FSV 3905208 & 500 & 16 M 0088 type 385-388; 16M-0786-00-002 type 389-390 \\
\hline
\end{tabular}

Steel-grid fixed resistor elements S 301G - S 321G


S313G - 0,022 with 2 additional connecting lugs

\section*{Technologies}
- particularly flat design
- high overload capacity
- continuous dissipation \(500 \mathrm{~W}^{(1)}\)
- energy absorption capacity with \(\Delta T=300 \mathrm{~K}\), from 150 up to 200 kWs
- integration possible

As accessories we deliver 1 or 2 lugs to each resistor element with connection screws M12. Normally they are not fixed, we will fix them upon request. Type designation: S301GF1 - S321GF1 (1 lug mounted), S301GF2 - S321GF2 (2 lugs mounted).

We produce steel-grid fixed resistor elements in a range of resistance values of \(0,0022 \Omega\) up to \(0,1 \Omega\) and a typical power of \(500 \mathrm{~W}^{(1)}\) per grid.
The given nominal ohmic values are about \(8 \%\) above the value of cold condition and \(7 \%\) below the value of operating temperature. The production tolerance is \(\pm 10 \%\).

The indicated ratings are valid for an ambient temperature of max. \(40^{\circ} \mathrm{C}\) at sufficient ventilation. The indicated values for the duty cycle factor (\%DCF) are preferred values and refer to a maximum total cycle time of 120 s .

You will find further indications for dimensioning of a resistor for short time dissipation in chapter Technical Details pages T613E to T620E.

Remark: Higher ohmic values with lower energy absorption capacity are available on request.

500 W , up to 200 kWs , for integration
0,0022 up to 0,1 ohm

Steel-grid fixed resistor element, degree of protection IP 00 for integration into units. Connection at the resistor.
(2) in preparation

Electrical and mechanical data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \% ED & 100 & 15 & 10 & 6 & 3 & 1 & \multirow[t]{2}{*}{energy-absorptioncapacity} \\
\hline typical power \({ }^{(1)}\) & [W] & 500 & 2000 & 2750 & 3800 & 6000 & 10000 & \\
\hline type & \(\Omega\) & \multicolumn{6}{|l|}{Max. current in amp. with \(40^{\circ} \mathrm{C} \mathrm{UT}\) and sufficient ventilation} & kWs \\
\hline S301G - 0,0022 & 0,0022 & 400 & 800 & 938 & 1103 & 1386 & 1789 & 200 \\
\hline S302G - 0,0027 & 0,0027 & 400 & 800 & 938 & 1103 & 1386 & 1789 & 200 \\
\hline S303G - 0,0033 & 0,0033 & 389 & 778 & 913 & 1073 & 1348 & 1741 & 200 \\
\hline S304G - 0,0039 & 0,0039 & 358 & 716 & 840 & 987 & 1240 & 1601 & 200 \\
\hline S305G - 0,0047 & 0,0047 & 326 & 652 & 765 & 899 & 1130 & 1459 & 180 \\
\hline S306G - 0,0056 & 0,0056 & 299 & 598 & 701 & 824 & 1035 & 1336 & 180 \\
\hline S307G - 0,0068 & 0,0068 & 271 & 542 & 636 & 748 & 939 & 1213 & 180 \\
\hline S308G - 0,0082 & 0,0082 & 247 & 494 & 579 & 681 & 855 & 1104 & 180 \\
\hline S309G - 0,010 & 0,010 & 224 & 447 & 524 & 616 & 775 & 1000 & 180 \\
\hline S310G - 0,012 & 0,012 & 204 & 408 & 479 & 563 & 707 & 913 & 180 \\
\hline S311G-0,015 & 0,015 & 183 & 365 & 428 & 503 & 632 & 816 & 165 \\
\hline S312G-0,018 & 0,018 & 167 & 333 & 391 & 459 & 577 & 745 & 165 \\
\hline S313G-0,022 & 0,022 & 151 & 302 & 354 & 416 & 522 & 674 & 165 \\
\hline S314G-0,027 & 0,027 & 136 & 272 & 319 & 375 & 471 & 609 & 165 \\
\hline S315G - 0,033 & 0,033 & 123 & 246 & 289 & 339 & 426 & 550 & 165 \\
\hline S316G-0,039 & 0,039 & 113 & 226 & 266 & 312 & 392 & 506 & 165 \\
\hline S317G - 0,047 & 0,047 & 103 & 206 & 242 & 284 & 357 & 461 & 165 \\
\hline S318G-0,056 & 0,056 & 94 & 189 & 222 & 260 & 327 & 423 & 150 \\
\hline S319G-0,068 & 0,068 & 86 & 171 & 201 & 236 & 297 & 383 & 150 \\
\hline S320G - 0,082 & 0,082 & 78 & 156 & 183 & 215 & 271 & 349 & 150 \\
\hline S321G-0,1 & 0,1 & 71 & 141 & 166 & 195 & 245 & 316 & 150 \\
\hline
\end{tabular}
(1) only valid for S303G - S321G


\section*{}

Steel-grid fixed resistor elements
S301A - S321A

\section*{Technologies}
- Design for building extremely compact resistor combinations, optimized for high energy absorption capacity
- high overload capacity
- energy absorption capacity with \(\Delta T=300 \mathrm{~K}\), from 150 up to 200 kWs
- integration possible

Steel-grid resistor elements are produced in a range of resistance values of \(0,0022 \Omega\) up to \(0,1 \Omega\). With the German patented design we can realize extremly compact resistor combinations with very spacesaving dimensions. Please look at our pages T635E and T637E.
The given nominal ohmic values are about \(8 \%\) above the value of cold condition and 7\% below the value of operating temperature. The production tolerance is \(\pm 10 \%\).

The connections are realised by screws M12 at the attached connecting lugs.

The indicated short time power values can be absorbed within the given time and are valid for a ambient temperature of max. \(40^{\circ} \mathrm{C}\) and for an excess temperature of 300 K .

A following break of 15 min . for cooling off with sufficient ventilation must be accepted before a new energy load can follow.

Remark: Higher ohmic values with lower energy absorption capacity are available on request.


\section*{150-200 kWs for integration, 0,0022 up to 0,1 ohm}
c \({ }^{-1}\) \begin{tabular}{|c|c|}
\hline IP \\
00 \\
\hline
\end{tabular} E 4. 庶

Steel-grid fixed resistor element, degree of protection IP 00 with angled connection side, for integration into units for extremely compact construction, with optimized energy absorption capacity. Connection at the resistor. Registration: German patented design no. 202012010188.9
\({ }^{(2)}\) in preparation

\section*{Electrical and mechanical data}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & ED[s] & 1 s & 2 s & 3 s & 5 s & 10 s & 20 s & 60 s \\
\hline type & \(\Omega\) & \multicolumn{7}{|r|}{Short time dissipation in kW with \(40^{\circ} \mathrm{C}\) UT and sufficient ventilation} \\
\hline S301A - 0,0022 & 0,0022 & 200 & 100 & 65 & 40 & 20 & 10 & 3,5 \\
\hline S302A - 0,0027 & 0,0027 & 200 & 100 & 65 & 40 & 20 & 10 & 3,5 \\
\hline S303A - 0,0033 & 0,0033 & 200 & 100 & 65 & 40 & 20 & 10 & 3,5 \\
\hline S304A - 0,0039 & 0,0039 & 200 & 100 & 65 & 40 & 20 & 10 & 3,5 \\
\hline S305A - 0,0047 & 0,0047 & 180 & 90 & 60 & 36 & 18 & 9 & 3,2 \\
\hline S306A - 0,0056 & 0,0056 & 180 & 90 & 60 & 36 & 18 & 9 & 3,2 \\
\hline S307A - 0,0068 & 0,0068 & 180 & 90 & 60 & 36 & 18 & 9 & 3,2 \\
\hline S308A - 0,0082 & 0,0082 & 180 & 90 & 60 & 36 & 18 & 9 & 3,2 \\
\hline S309A - 0,010 & 0,010 & 180 & 90 & 60 & 36 & 18 & 9 & 3,2 \\
\hline S310A - 0,012 & 0,012 & 180 & 90 & 60 & 36 & 18 & 9 & 3,2 \\
\hline S311A - 0,015 & 0,015 & 165 & 84 & 55 & 42 & 16,5 & 8,3 & 3,0 \\
\hline S312A - 0,018 & 0,018 & 165 & 84 & 55 & 42 & 16,5 & 8,3 & 3,0 \\
\hline S313A - 0,022 & 0,022 & 165 & 84 & 55 & 42 & 16,5 & 8,3 & 3,0 \\
\hline S314A - 0,027 & 0,027 & 165 & 84 & 55 & 42 & 16,5 & 8,3 & 3,0 \\
\hline S315A - 0,033 & 0,033 & 165 & 84 & 55 & 42 & 16,5 & 8,3 & 3,0 \\
\hline S316A - 0,039 & 0,039 & 165 & 84 & 55 & 42 & 16,5 & 8,3 & 3,0 \\
\hline S317A - 0,047 & 0,047 & 165 & 84 & 55 & 42 & 16,5 & 8,3 & 3,0 \\
\hline S318A - 0,056 & 0,056 & 150 & 75 & 50 & 37,5 & 15 & 7,5 & 2,7 \\
\hline S319A - 0,068 & 0,068 & 150 & 75 & 50 & 37,5 & 15 & 7,5 & 2,7 \\
\hline S320A - 0,082 & 0,082 & 150 & 75 & 50 & 37,5 & 15 & 7,5 & 2,7 \\
\hline S321A - 0,1 & 0,1 & 150 & 75 & 50 & 37,5 & 15 & 7,5 & 2,7 \\
\hline
\end{tabular}

Remark: The given short time power can be absorpted in the given time with a following break of 15 min .


\footnotetext{
16M-0900-00-001
}

\section*{Type series FEY 31..}


\section*{Technologies}
- for high energy absorption capacity
- for high continuous currents
- integration and combinations possible
- for integration into switch cabinet
- continuous dissipation up to \(19,5 \mathrm{~kW}\)
- energy absorption capacity with \(\Delta \mathrm{T}=300 \mathrm{~K}\), up to \(7,8 \mathrm{MWs}\)
- optional with temperature switch (TS) with fast-on connections 6,3x0,8, type FEYQ 31...

Each resistor device can be equipped with 2 or more connecting lugs. The connections are made with screws M12 at the mounted connecting lugs. The integration in a switch cabinet, machine or in a duct is made by means of 2 threaded bolts M12.
We achieve a wide range of resistance values and wattage rating by variation of number of steel-grids and resistance values.
The given power rating values are valid for \(100 \%\) CD (continuous dissipation). For short time operation you will find the values in the following table as a function of the duty cycle factor (DCF). Just multiply by the corresponding overload factor (OLF).
\begin{tabular}{|c|c|c|c|c|c|}
\hline DCF & \(60 \%\) & \(40 \%\) & \(25 \%\) & \(15 \%\) & \(6 \%\) \\
\hline OLF & 1,5 & 2,2 & 3,0 & 4,0 & 7,6 \\
\hline
\end{tabular}

These overload factors are valid for a total cycle time of maximum 120 s

\section*{Warning:}

Not more than 3 resistor blocks should be mounted on top of each other!
For customer wiring you should use a heat resistant wire.

\section*{Application}
- filter resistor
- FRT resistor
- Crowbar resistor
- load resistor
- charge/discharge resistor
- current limiting resistor
\(1,0-19,5 \mathrm{~kW}\), up to \(7,8 \mathrm{MWs}\), for integration, low ohmic values, high energy absorption capacity


Steel-grid fixed resistor block in protection degree IP 00 for high energy absorption capacity, for integration into switch cabinets, devices or ventilation ducts. Connection directly at the resistor.
\({ }^{(2)}\) in preparation

\section*{Electrical and mechanical data}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Type \\
FEY 3.. \\
without TS,
\end{tabular} & \multicolumn{2}{|l|}{one-time energy absorption capacity in kWs} & typical power in kW at \(40^{\circ} \mathrm{C}\) and 100\%ED & \multicolumn{2}{|l|}{production range \(\mathrm{m} \Omega\)-value} & \begin{tabular}{l}
max. \\
number of steel-grids corresp. to given
\end{tabular} & dim. in mm & max. weight in kg \\
\hline FEYQ 3.. with TS & from & up to & & from & to & \[
\begin{aligned}
& \text { device } \\
& \text { size } \\
& \hline
\end{aligned}
\] & L & \\
\hline FEY. 31502.. & 300 & 400 & 1,0 & 4,4 & 200 & 2 & 180 & 3,6 \\
\hline FEY. 31504.. & 600 & 800 & 2,0 & 8,8 & 400 & 4 & 180 & 6,0 \\
\hline FEY. 31006.. & 900 & 1200 & 3,0 & 13,2 & 600 & 6 & 280 & 9,9 \\
\hline FEY. 31008.. & 1200 & 1600 & 4,0 & 17,6 & 800 & 8 & 280 & 12,3 \\
\hline FEY. 31110.. & 1500 & 2000 & 5,0 & 22 & 1000 & 10 & 380 & 14,9 \\
\hline FEY. 31112.. & 1800 & 2400 & 6,0 & 26,4 & 1200 & 12 & 380 & 17,3 \\
\hline FEY. 31216.. & 2400 & 3200 & 8,0 & 35,2 & 1600 & 16 & 580 & 22,5 \\
\hline FEY. 31221.. & 3150 & 4200 & 10,5 & 46,2 & 2100 & 21 & 580 & 28,5 \\
\hline FEY. 31326.. & 3900 & 5200 & 13,0 & 57,2 & 2600 & 26 & 780 & 35,0 \\
\hline FEY. 31330.. & 4500 & 6000 & 15,0 & 66 & 3000 & 30 & 780 & 39,8 \\
\hline FEY. 31433.. & 4950 & 6600 & 16,5 & 72,6 & 3300 & 33 & 980 & 44,0 \\
\hline FEY. 31436.. & 5400 & 7200 & 18,0 & 79,2 & 3600 & 36 & 980 & 47,6 \\
\hline FEY. 31439.. & 5850 & 7800 & 19,5 & 85,8 & 3900 & 39 & 980 & 51,2 \\
\hline
\end{tabular}

This table represents only a selection of our program. All numbers of steel-grids between 2 pcs.. ( \(1,0 \mathrm{~kW}\) ) and 39 pcs. ( \(19,5 \mathrm{~kW}\) ) corresponding to our types are available. For the type code and selection of units you will be assisted from us.


\section*{Example of dimensioning and selection of a special unit:}

Three phase filter resistor, for \(3 \times 1,0 \mathrm{~kW}\) and \(3 \times 690 \mathrm{VAC}\), resistor value \(3 \times 35 \mathrm{~m} \Omega\); selected: \(3 \times 2\) S312G - 0,018 with each \(0,5 \mathrm{~kW}\left(\sum 3 \times 1 \mathrm{~kW}\right)=3 \times 36 \mathrm{~m} \Omega\); type FEY \(3100606-3 \times 0.036\) with continuous dissipation \(3 \times 1,0 \mathrm{~kW}\), connection on 6 connection lugs with screws M12 at the resistor


Type series FEP 31..


\section*{Technologies}
- for very high energy absorption capacity, for a short time within seconds
- for short time high currents
- integration and combinations possible
- for integration into a switch cabinet
- energy absorption capacity with \(\Delta \mathrm{T}=300 \mathrm{~K}\), up to \(7,2 \mathrm{MWs}\)

Each resistor device can be equipped with 2 or more connecting lugs. The connections are made with screws M12 at the mounted connecting lugs. The mounting in the switch cabinet, machine or in the duct is made by means of 2 threaded bolts M12.

The applicated steel-grid resistor elements are produced in a range of resistance values of \(2,2 \mathrm{~m} \Omega\) up to \(100 \mathrm{~m} \Omega\) (please look on page T633E). With the German patented design we can realise extremly compact resistor combinations with very space-saving dimensions.
The given nominal ohmic values are about \(8 \%\) above the value of cold condition and 7\% below the value of operating temperature. The production tolerance is \(\pm 10 \%\).
With the variation of the number of resistor elements and ohmic values a wide range of the resulting ohmic values and energy absorption capacities can be covered.
The connections are realized by screws M12 at the attached connecting lugs.

The indicated short time power values can be absorbed within the given time and are valid for a room temperature of max. \(40^{\circ} \mathrm{C}\) and for an excess temperature of 300 K .
A following break of 15 min . for cooling off with sufficient ventilation must be accepted before a new energy load can follow.

\section*{Application}
- FRT resistor
- LVRT resistor
- crowbar resistor
- charge-/discharge resistor
- emergency stop resistor

150 kWs up to \(7,2 \mathrm{MWs}\) for integration, compact sizing, high energy absorption capacity
C

Steel-grid fixed resistor block in protection degree IP 00 for very high energy absorption capacity or high short time dissipation in a extremely compact design. For integration into a switch cabinet. Connection at the resistor. Registered design protected construction. Not recommanded for continuous dissipation or DCF application.
Registration: German patented design no. 202012010188.9
(2)
in preparation

\section*{Electrical and mechanical data}


This table represents only a selection of our program. All numbers of steel-grids between 2 pcs. ( 300 kWs ) and 36 pcs . (7,2 MWs) corresponding to our types are available. For the type code and selection of units you will be assisted from us.


\section*{Example of dimensioning and selection of a special unit:}

FRT load resistor, three-phase, for short time \(3 \times 1\) MWs within 3-4 sec., repeated every 15 min., each phase \(1,0 \mathrm{MWs}\) for 1000 V DC, resistor value \(0,13 \Omega\); selected: \(6 \times\) S313A - 0,022 with each \(165 \mathrm{kWs}(\Sigma 990 \mathrm{kWs})=0,132 \Omega\);
type FEP 3121806-3x 0.13, connection on 6 lugs with connection screws M12 at the resistor
FEP 312 18 \(06-\underline{3} 0.13\)


\section*{Type series FKEY 31..}


\section*{Technologies}
- for high energy absorption capacity
- for high continuous currents
- continuous dissipation up to \(19,5 \mathrm{~kW}\)
- for integration into switch cabinets
- optional with temperature switch (TS) with fast-on connections 6,3×0,8, type FKEYQ 31..

Each resistor device can be equipped with 2 or more connecting lugs. The connections are made with screws M12 at the mounted connecting lugs. The resistor is mounted by means of two side plates.
We achieve a wide range of resistance values and wattage rating by variation of number of steel-grids and resistance values.

Combining of several partial resistors (e.g. 3 phases) in one resistor unit is possible. They are separated by insulation rolls.

You will find suggestions for the dimensioning of the resistor for short time load in chapter "Technical details", please look on page T613E up to T618E.
For customer wiring you should use a heat resistant wire.

\section*{Application}

Customized solutions like integrating a resistor unit into a switch cabinet, when a very compact design is needed.

Thus various kinds of solutions are possible for many applications such as:
- FRT resistor
- crowbar resistor
- load resistor
- charge-/discharge resistor
- current limiting resistor

\section*{1,0-19,5 kW, up to 7,8 MWs, for integration, low ohmic values, high energy absorption capacity}


Steel-grid fixed resistor block, with side plates, in protection degree IP 00 for high energy absorption capacity, for integration into switch cabinets. Connection directly at the resistor.
(2) in preparation

\section*{Electrical and mechanical data}


This table represents only a selection of our program. All numbers of steel-grids between 2 pcs.. ( \(1,0 \mathrm{~kW}\) ) and 39 pcs. ( \(19,5 \mathrm{~kW}\) ) corresponding to our types are available. For the type code and selection of units you will be assisted by us.

The changes of dimension B are 22 mm for each steel-grid (SG). The mounting holes are on the dimension sheet.


16M-0896-00-000

\section*{Example of dimensioning and selection of a special unit:}

Load resistor for battery, single phase, for continuous dissipation 10 kW , for 32 V DC, resistor value \(0,1 \Omega\); Rcold \(=0,95 \times\) Rsoll \(=0,95 \times 0,1 \Omega=0,095 \Omega\); selected: \(20 \times\) S305G \(-0,0047=0,94 \Omega\), with each \(0,5 \mathrm{~kW}\) in total 10 kW ,
type FKEY 3122002 - 0.1, connections on 2 lugs with connection screws M12 at the resistor


Type series FKEP 31．．


\section*{Technologies}
－for very high energy absorption capacity，for a short time within seconds
－for short time high currents
－integration and combinations possible
－for integration into switch cabinet
－energy absorption capacity with \(\Delta \mathrm{T}=300 \mathrm{~K}\) ，up to \(7,2 \mathrm{MWs}\)

Each resistor device can be equipped with 2 or more connecting lugs．The connections are made with screws M12 at the mounted connecting lugs．The resistor is mounted by means of two side plates．

The applicated steel－grid resistor elements are produced in a range of resistance values of \(2,2 \mathrm{~m} \Omega\) up to \(100 \mathrm{~m} \Omega\) ．（see page T633E）．With the German patented design we can realise extremly compact resistor combinations with very space－saving dimensions．

With the variation of the number of resistor elements and ohmic values a wide range of the resulting ohmic values and energy absorption capacities can be covered．

The indicated short time power values can be absorbed within the given time and are valid for a room temperature of max． \(40^{\circ} \mathrm{C}\) and for an excess temperature of 300 K ． A following break of 15 min ．for cooling off with sufficient ventilation must be accepted before a new energy load can follow．

\section*{Application}
－FRT resistor
－LVRT resistor
－Crowbar resistor
－Discharging resistor
－Emergency stop resistor

150 kWs－7，2 MWs for integration， compact sizing，high energy absorption capacity
\({ }^{\text {ch }}{ }^{5}{ }^{5}\) \begin{tabular}{|c|}
\hline 18 \\
00 \\
\hline
\end{tabular}


H冊｜
\(7 / 7 / 7 / 7\)

Steel－grid fixed resistor block with side plates in protection degree IP 00 for very high energy absorption capacity or high short time dissipation in an extremly compact design．For integration into a switch cabinet．Connection at the resistor．Registered design protected construction．Not suitable for continuous dissipation．
Registration：German patented design no． 202012010188.9
\({ }^{(2)}\) in preparation

\section*{Electrical and mechanical data}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
type \\
FKEP 3．．
\end{tabular} & \multicolumn{2}{|l|}{one－time energy absorption capacity in kWs} & max． current in kA for 1 s at \(40^{\circ} \mathrm{C}\) & \multicolumn{2}{|l|}{production range \(\mathrm{m} \Omega\)－value} & \begin{tabular}{l}
max． \\
number of steel－grids corresp． to given device size
\end{tabular} & dim．in mm
B & max． weight in kg \\
\hline FKEP31502．． & 300 & 400 & 0，6－4，7 & 4，4 & 200 & 2 & 157，5 & 8，0 \\
\hline FKEP31504．． & 600 & 800 & 0，6－4，7 & 8，8 & 400 & 4 & 182，5 & 10，3 \\
\hline FKEP31006．． & 900 & 1200 & 0，6－4，7 & 13，2 & 600 & 6 & 207，5 & 12，8 \\
\hline FKEP31008．． & 1200 & 1600 & 0，6－4，7 & 17，6 & 800 & 8 & 232，5 & 15，3 \\
\hline FKEP31010．． & 1500 & 2000 & 0，6－4，7 & 22 & 1000 & 10 & 257，5 & 17，8 \\
\hline FKEP31012．． & 1800 & 2400 & 0，6－4，7 & 26，4 & 1200 & 12 & 282，5 & 20，3 \\
\hline FKEP31114．． & 2100 & 2800 & 0，6－4，7 & 30，8 & 1400 & 14 & 307，5 & 22，8 \\
\hline FKEP31118．． & 2700 & 3600 & 0，6－4，7 & 39，6 & 1800 & 18 & 357，5 & 27，8 \\
\hline FKEP31120．． & 3300 & 4400 & 0，6－4，7 & 48，4 & 2200 & 20 & 392 & 30，3 \\
\hline FKEP31224．． & 3600 & 4800 & 0，6－4，7 & 52，8 & 2400 & 24 & 442，5 & 35，3 \\
\hline FKEP31228．． & 4200 & 5600 & 0，6－4，7 & 61，6 & 2800 & 28 & 492，5 & 40，3 \\
\hline FKEP31232．． & 4800 & 6400 & 0，6－4，7 & 70，4 & 3000 & 32 & 542，5 & 45，3 \\
\hline FKEP31236．． & 5400 & 7200 & 0，6－4，7 & 79，2 & 3600 & 36 & 592，5 & 50，3 \\
\hline
\end{tabular}

This table only represents only a selection of our program．All numbers of steel－grids between 2 pcs．（ 300 kWs ）and 36 pcs ．（ \(7,2 \mathrm{MWs}\) ）corresponding to our types are available．Details about the max．energy absorption capacity please look on page T633E．For the type code and selection of units you will be assisted by us．
The specified dimensions（size B）are valid for 1 partial resistor and changes only slightly，when more partial resistors are used in one block．The mounting holes are on the dimension sheet．


\section*{Example of dimensioning and selection of a special unit：}

FRT load resistor，single phase，for a short time 3 MWs within 3－4 s，repeated every 15 min．：3，0 MWs for 1200 V DC，resistor value \(1,12 \Omega\) ；
selected： \(20 \times\) S318A－0，056 with each \(150 \mathrm{kWs}(\Sigma 3000 \mathrm{kWs})=1,12 \Omega\)
type FKEP 3112002－1．12，connections on 2 lugs with connection screws M12 at the resistor


\section*{FRIZLEN SONDERGERÄTE SPECIAL DEVIGES}


\section*{DC-Powerswitch}

FRIZLEN DC-Powerswitch - Einstellbarer Schutz von ohmschen Lasten an Gleichspannung bis 850 V. Fein skalierbar für Nennströme von 1,0 bis 40 A . Eingebaut in Widerstandsgeräte werden eigensichere Widerstände mit Kurzschluss- und Überlastüberwachung mit Abschaltung und Meldung erreicht. Die Schutzgeräte sind geeignet für standardmäßigen Bremsbetrieb an Frequenzumrichtern.

\section*{Kundenspezifische Widerstandsgeräte}

FRIZLEN fertigt mit nahezu 50 \% seines Portfolios kundenspezifische Widerstände. Ob angebaut an integrierte Motorumrichter, untergebaut unter Frequenzumrichter oder als externe Widerstände mit speziellen mechanischen und elektrischen Eigenschaften - FRIZLEN sucht gemeinsam mit den Kunden nach der bestmöglichen Lösung.

DC-Powerswitch

FRIZLEN DC-Powerswitch - Adjustable safety at ohmic loads connected on DC voltages up to 850 V. Fine adjustable scale for nominal currents from 1,0 up to 40 A . Thanks to the integration into power resistor devices, self secure power resistors with short-circuit and overload protection and monitoring can be achieved. The safety devices are suitable for use with brake resistors at frequency converters.

\section*{Customised resistor units}

FRIZLEN produces nearly \(50 \%\) of its portfolio as customised resistor units. Attached to motor-frequency converter-combinations, as foot print resistors to frequency converters or as external resistors with specialised mechanical or electrical features - FRIZLEN tries to find the best solution together with its customers.


Type series FPS


\section*{Technologies}
- overload protection
- short circuit up to \(5 \mathrm{kA}, 1 \mathrm{~ms}\)
- re-switchable
- 1,0-40 A rated current, DC1
- up to 850 V DC
- for installation into a switch cabinet or a terminal box of a FRIZLEN power resistor
- for intrinsically safe resistors
- with signal contact

\section*{Intrinsically safe resistors through FRIZLEN DC-POWERSWITCH}

These overload switches are developed to protect the integrated resistors from constant overload and from too high short time peak power, e.g. caused by a false operational mode or a fault by an short circuited chopper transistor.
This option for protection signals not only the hardware fault, it switches off the object / the resistor absolutely reliable! Possible damage in the environment through overheating and burning are effectively avoided. The actual fault is reported over potential free N/O and N/C contacts. After a successful fault clearance the DCPowerswitch can be switched on like a normal automatic fuse.

\section*{Connection cross section}
\begin{tabular}{|l|l|}
\hline Fine stranded & Connection up to \\
\hline \begin{tabular}{l} 
Rated current \\
max. AWG 8
\end{tabular} & FPS1.6-10, AWG14 \\
& \begin{tabular}{l} 
FPS16, AWG12 \\
FPS20-25, AWG10 \\
FPS32-40, AWG8
\end{tabular} \\
\hline \begin{tabular}{l} 
Auxiliary current \\
max. AWG 14
\end{tabular} & FPS1.6-40, AWG14 \\
\hline
\end{tabular}

Contact ratings of the signal contact:
- 5 A / 24 VDC (DC11)
- 10 A / 230 VAC (AC11)

FRIZLEN DC-POWERSWITCH - 1,0 A up to 40 A c \({ }^{-1}\)


FRIZLEN DC-POWERSWITCH. Adjustable protection of loads at DC voltage up to 850 V . Loads with a rated current from 1,0 up to 40 A can be connected. The tripping device and the characteristics are similar to motor-circuit switches. 10 ranges of adjustment are available.
The DC-Powerswitch reacts on thermal overload, also electromagnetically on short circuit and on the multiple of the rated current.

Registration: German patented design no. 202009015851.9
UL registration according to UL1077 with E357442

Electrical and mechanical data
\begin{tabular}{|l|c|c|l|c|c|l|c|c|}
\hline Type & \multicolumn{2}{|c|}{\begin{tabular}{c} 
Adjustment \\
range
\end{tabular}} & Type & \multicolumn{2}{c|}{\begin{tabular}{c} 
Adjustment \\
range
\end{tabular}} & Type & \multicolumn{2}{c|}{\begin{tabular}{c} 
Adjustment \\
range \\
A-value
\end{tabular}} \\
& from & up to & & from & up to & & \multicolumn{2}{c|}{\begin{tabular}{c} 
A-value \\
Arom
\end{tabular}} \\
\hline FPS 1.6 & 1,0 & 1,6 & FPS 10 & 6,3 & 10 & FPS 32 & 25 & 32 \\
\hline FPS 2.5 & 1,6 & 2,5 & FPS 16 & 10 & 16 & FPS 40 & 32 & 40 \\
\hline FPS 4.0 & 2,5 & 4,0 & FPS 20 & 16 & 20 & & & \\
\hline FPS 6.3 & 4,0 & 6,3 & FPS 25 & 20 & 25 & & & \\
\hline
\end{tabular}


Attention: Please pay attention for connecting the correct polarity!

FPS 1.6-25


FPS 32-40
```


[^0]: (1) Optional (voltage divider to extend the operation time and/or to adjust to higher mains voltage)

[^1]: 12 M 0307

[^2]: 13 M-0759-00-000

